首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
大气科学   3篇
地球物理   1篇
地质学   9篇
自然地理   2篇
  2019年   1篇
  2014年   1篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
  1987年   1篇
  1981年   1篇
  1968年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
The Neogene Humboldt (Eel River) Basin is located along the north-eastern margin of the Pacific Ocean within the Cascadia subduction zone. This sedimentary basin originated near the base of the accretionary prism in post-Eocene time. Subduction processes since that time have elevated strata in the south-eastern portion of the basin above sea level. High-resolution chronostratigraphic data from the onshore portion of the Humboldt Basin enable correlation of time-equivalent lithofacies across the palaeomargin, reconstruction of slope-basin evolution, and preliminary delineation of climatic and tectonic influence on lithological variation. Emergent basin fill is divided into five lithofacies which clearly document shoaling of the inner trench slope from deep-water environments in early Miocene time to paralic environments in Pleistocene time. The oldest strata consist of hemipelagic mudstones and minor debris-flow breccias deposited in a deep-water setting during elevated sea level. These strata are overlain by glauconite-rich, fine-grained turbidites which heralded an increasing influx of terrigenous detritus. Water depths shoaled earlier in the eastern basin area as the palaeoshoreline prograded seaward. Turbidite deposition ceased in the eastern basin area at about 2-2 Ma, whereas 22 km to the west, turbidite deposition continued until about 1-8 Ma. Lithofacies at the western study site change abruptly across a middle Pleistocene unconformity from outer shelf to paralic deposits. In the east, a more complete Pleistocene section records transition from outer to inner shelf, beach and fluvial environments. The Humboldt Basin lithofacies sequence is overprinted by eustatic control of sediment source. Comparison of sediment character with palaeoceanographic conditions indicates dominance of hemipelagic facies during periods of elevated sea level in the middle Miocene and early Pliocene when depocentres were isolated from terrigenous sediment. Glauconite-rich facies were mobilized from an upper slope setting following these periods of elevated sea level and redeposited in a deep-marine environment. Pleistocene shoreline lithofacies display glacio-esutatic control of depositional environment by recording several cycles of nearshore to fluvial progressions. General models of accretionary prism behaviour and trench-slope basin evolution are compatible with the overall coarsening-upward lithofacies sequence filling the Humboldt Basin. Early structural barriers precluded deposition of terrigenous material except from locally derived debris flows; subsequent shoaling and burial of deactivated thrust-folds enabled turbidity flows to reach the basin floor. However, late-stage tectonism apparently controlled the onset of coarse-grained deposition in this sequence. Significant sand-rich turbidite deposition began in the middle Pliocene, synchronous with tectonic uplift of the southern basin margin. Conversely, cessation of turbidite deposition in the eastern basin area in latest Pliocene time was synchronous with growth of anticlinal structures which again blocked widespread dispersal of turbidity flows. This middle Pliocene to Holocene period of crustal shortening is synchronous with continued reduction in spreading rate along the southern Juan de Fuca ridge, and probably reflects partial coupling between the subducting lithosphere and the overlying accretionary prism.  相似文献   
2.
Numerous freshwater ecosystems, dense concentrations of humans along the eastern seaboard, extensive forests and a history of intensive land use distinguish the New England/Mid-Atlantic Region. Human population densities are forecast to increase in portions of the region at the same time that climate is expected to be changing. Consequently, the effects of humans and climatic change are likely to affect freshwater ecosystems within the region interactively. The general climate, at present, is humid continental, and the region receives abundant precipitation. Climatic projections for a 2 × CO2 atmosphere, however, suggest warmer and drier conditions for much of this region. Annual temperature increases ranging from 3–5°C are projected, with the greatest increases occurring in autumn or winter. According to a water balance model, the projected increase in temperature will result in greater rates of evaporation and evapotranspiration. This could cause a 21 and 31% reduction in annual stream flow in the southern and northern sections of the region, respectively, with greatest reductions occurring in autumn and winter. The amount and duration of snow cover is also projected to decrease across the region, and summer convective thunderstorms are likely to decrease in frequency but increase in intensity. The dual effects of climate change and direct anthropogenic stress will most likely alter hydrological and biogeochemical processes, and, hence, the floral and faunal communities of the region's freshwater ecosystems. For example, the projected increase in evapotranspiration and evaporation could eliminate most bog ecosystems, and increases in water temperature may increase bioaccumulation, and possibly biomagnification, of organic and inorganic contaminants. Not all change may be adverse. For example, a decrease in runoff may reduce the intensity of ongoing estuarine eutrophication, and acidification of aquatic habitats during the spring snowmelt period may be ameliorated. Recommendations for future monitoring efforts include: (1) extending and improving data on the distribution, abundance and effect of anthropogenic stressors (non-point pollution) within the region; and (2) improving scientific knowledge regarding the contemporary distribution and abundance of aquatic species. Research recommendations include: (1) establishing a research centre(s) where field studies designed to understand interactions between freshwater ecosystems and climate change can be conducted; (2) projecting the future distribution, activities and direct effects of humans within the region; (3) developing mathematical analyses, experimental designs and aquatic indicators that distinguish between climatic and anthropogenic effects on aquatic systems; (4) developing and refining projections of climate variability such that the magnitude, frequency and seasonal timing of extreme events can be forecast; and (5) describing quantitatively the flux of materials (sediments, nutrients, metals) from watersheds characterized by a mosaic of land uses. © 1997 John Wiley & Sons, Ltd.  相似文献   
3.
Melt inclusions are small portions of liquid trapped by growingcrystals during magma evolution. Recent studies of melt inclusionshave revealed a large range of unusual major and trace elementcompositions in phenocrysts from primitive mantle-derived magmaticrocks [e.g. in high-Fo olivine (Fo > 85 mol %), spinel, high-Anplagioclase]. Inclusions in phenocrysts crystallized from moreevolved magmas (e.g. olivine Fo < 85 mol %), are usuallycompositionally similar to the host lavas. This paper reviewsthe chemistry of melt inclusions in high-Fo olivine phenocrystsfocusing on those with anomalous major and trace element contentsfrom mid-ocean ridge and subduction-related basalts. We suggestthat a significant portion of the anomalous inclusion compositionsreflects localized, grain-scale dissolution–reaction–mixing(DRM) processes within the magmatic plumbing system. The DRMprocesses occur at the margins of primitive magma bodies, wheremagma is in contact with cooler wall rocks and/or pre-existingsemi-solidified crystal mush zones (depending on the specificenvironment). Injection of hotter, more primitive magma causespartial dissolution (incongruent melting) of the mush-zone phases,which are not in equilibrium with the primitive melt, and mixingof the reaction products with the primitive magma. Localizedrapid crystallization of high-Fo olivines from the primitivemagma may lead to entrapment of numerous large melt inclusions,which record the DRM processes in progress. In some magmaticsuites melt inclusions in primitive phenocrysts may be naturallybiased towards the anomalous compositions. The occurrence ofmelt inclusions with unusual compositions does not necessarilyimply the existence of new geologically significant magma typesand/or melt-generation processes, and caution should be exercisedin their interpretation. KEY WORDS: melt inclusions; olivine; geochemistry; mush zones; MORB; subduction-related magmas  相似文献   
4.
5.
Tasmania's montane temperate rainforests contain some of Australia's most ancient and endemic flora. Recent landscape‐scale fires have impacted a significant portion of these rainforest ecosystems. The complex and rugged topography of Tasmania results in a highly variable influence of fire across the landscape, rendering predictions of ecosystem response to fire difficult. We assess the role of topographic variation in buffering the influence of fire in these endemic rainforest communities. We developed a new 14 000‐year (14‐ka) palaeoecological dataset from Lake Perry, southern Tasmania, and compared it to neighbouring Lake Osborne (<250 m distant) to examine how topographic variations influence fire and vegetation dynamics through time. Repeated fire events during the Holocene cause a decline in montane rainforest taxa at both sites; however, in the absence of fire, rainforest taxa are able to recover. Montane temperate rainforest taxa persisted at Lake Perry until European settlement, whilst these taxa were driven locally extinct and replaced by Eucalyptus species at Lake Osborne after 2.5 ka. Contiguous topographic fire refugia within the Lake Perry catchment probably provided areas of favourable microclimates that discouraged fire spread and supported the recovery of these montane temperate rainforests. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   
6.
ABSTRACT. Adopting the persona of the nonacademic, J. B. Jackson was, nonetheless, a major influence on academic scholarship. Expertly and deftly, he played on his understanding of scholarly convention, pushing the boundaries of “legitimate” generalization and assertion. Careful observation of his style reveals eight strategies for testing, mocking, and challenging habits of mind that can unnecessarily constrict scholarly inquiry. From daring in the drawing of conclusions to the wily use of the pronoun “we,” from a refusal to defer to middle-class values to the baiting of environmentalists, Jackson at once had a good time and called much of academic propriety into question. An examination of his “game plan” gives scholars a chance to examine their own habitual practices.  相似文献   
7.
8.
9.
Late Pleistocene morainic sequences around Dundalk Bay, eastern Ireland, were deposited in a variety of shallow, glaciomarine environments at the margins of a grounded ice lobe. The deposits are essentially ice-proximal delta-fan and -apron sequences and are divided into two lithofacies associations. Lithofacies association 1 occurs as a series of morainal banks formed at the southern margin of the ice lobe in a body of water open to influences from the Irish Sea. The morainal banks consist mainly of diamictic muds deposited from turbid plumes and by ice-rafting with minor occurrences of turbidites, cross-bedded gravels (subaqueous outwash) and massive boulder gravels (high-density debris flows). Lithofacies association 2 was deposited in a narrow arm of the sea at the north-eastern margin of the ice lobe. The deposits consist mainly of a series of coalescing, ice-proximal Gilbert-type fan deltas which are interbedded distally with tabular and lens-shaped subaqueous deposits. The latter are mainly ice-rafted diamictons, debris-flow deposits and subaqueous sands and gravels. Both lithofacies associations are draped by diamictons formed by a combination of rain-out, debris flow and traction-current activity. At a few localities the upper parts of the sequence have been sheared by minor oscillations of the ice sheet margin. These sequences form part of an extensive belt of glaciomarine deposits which border the drumlin swarms of east-central Ireland. Lithostratigraphic variability is partially related to the arrival of large volumes of debris at the ice lobe margin when the main lowland ice sheet surged during drumlin formation. Complex depositional continua of this type lack any major erosional breaks and should not be used either as climatic proxies or for stratigraphic correlations.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号