首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   9篇
  国内免费   3篇
测绘学   1篇
大气科学   9篇
地球物理   45篇
地质学   31篇
海洋学   54篇
天文学   10篇
综合类   6篇
自然地理   3篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2014年   5篇
  2013年   9篇
  2012年   2篇
  2011年   7篇
  2010年   3篇
  2009年   11篇
  2008年   9篇
  2007年   6篇
  2006年   8篇
  2005年   6篇
  2004年   15篇
  2003年   4篇
  2002年   8篇
  2001年   6篇
  2000年   6篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1972年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
1.
2.
This study investigates the Arctic Ocean warming episodes in the 20th century using both a high-resolution coupled global climate model and historical observations. The model, with no flux adjustment, reproduces well the Atlantic Water core temperature (AWCT) in the Arctic Ocean and shows that four largest decadalscale warming episodes occurred in the 1930s, 70s, 80s, and 90s, in agreement with the hydrographic observational data. The difference is that there was no pre-warming prior to the 1930s episode, while there were two pre-warming episodes in the 1970s and 80s prior to the 1990s, leading the 1990s into the largest and prolonged warming in the 20th century. Over the last century, the simulated heat transport via Fram Strait and the Barents Sea was estimated to be, on average, 31.32 TW and 14.82 TW, respectively, while the Bering Strait also provides 15.94 TW heat into the west- ern Arctic Ocean. Heat transport into the Arctic Ocean by the Atlantic Water via Fram Strait and the Barents Sea correlates significantly with AWCT ( C = 0.75 ) at 0- lag. The modeled North Atlantic Oscillation (NAO) index has a significant correlation with the heat transport ( C = 0.37 ). The observed AWCT has a significant correlation with both the modeled AWCT ( C =0.49) and the heat transport ( C =0.41 ). However, the modeled NAO index does not significantly correlate with either the observed AWCT ( C = 0.03 ) or modeled AWCT ( C = 0.16 ) at a zero-lag, indicating that the Arctic climate system is far more complex than expected.  相似文献   
3.
To evaluate the contribution of biogeochemical processes to the oceanic carbon cycle and to calculate the ratio of calcium carbonate to organic carbon downward export, we have incorporated biological and alkalinity pumps in the yoked high-latitude exchange/interior diffusion-advection (YOLDA) model. The biogeochemical processes are represented by four parameters. The values of the parameters are tuned so that the model can reproduce the observed phosphate and alkalinity distributions in each oceanic region. The sensitivity of the model to the biogeochemical parameters shows that biological production rates in the euphotic zone and decomposition depths of particulate matters significantly influence horizontal and vertical distributions of biogeochemical substances. The modeled vertical fluxes of particulate organic phosphorus and calcium carbonate are converted to vertical carbon fluxes by the biological pump and the alkalinity pump, respectively. The downward carbon flux from the surface layer to the deep layer in the entire region is estimated to be 3.36 PgC/yr, which consists of 2.93 PgC/yr from the biological pump and 0.43 PgC/yr from the alkalinity pump, which is consistent with previous studies. The modeled rain ratio is higher with depth and higher in the Pacific and Indian Oceans than in the Atlantic Ocean. The global rain ratio at the surface layer is calculated to be 0.14 to 0.15. This value lies between the lower and higher ends of the previous estimates, which range widely from 0.05 to 0.25. This study indicates that the rain ratio is unlikely to be higher than 0.15, at least in the surface waters.  相似文献   
4.
The abundance and vertical distribution pattern of a mysidMeterythrops microphthalma were investigated in the Japan Sea. Results from vertical hauls from 602–982 m depth to the surface around Yamato Rise in April 1987 indicated that the dominance (by biomass) ofM. microphthalma was third to fifth of major zooplankton taxa. Vertical distribution investigated at a single station in Toyama Bay in June, September and December 1986 showed that the most part of population of this mysid inhabited consistently below 250 m depth. No marked diurnal vertical migration was evident. Data on body composition and oxygen consumption rate ofM. microphthalma are presented. Water content of the body was 75.6–83.8% of wet weight, and ash was 11.4–20.4% of dry weight. Carbon, hydrogen and nitrogen were 37.9–47.5%, 6.2–7.4% and 9.4–10.1%, respectively, of dry weight. Oxygen consumption rates were 2.2–11.0µl O2 individual–1 hr–1 at 0.5°C, and were directly proportional to body mass. From the comparison with the published data on epipelagic and bathypelagic mysids it is revealed that both body nitrogen composition and oxygen consumption rate expressed as adjusted metabolic rate [AMR02,µl O2 (mg body N)–0.85 hr–1] ofM. microphthalma are intermediate between high epipelagic and low bathypelagic levels, indicating typical mesopelagic features.  相似文献   
5.
We report on the ability for luxury Fe uptake and the potential for growth utilizing intracellular Fe pools for 4 coastal centric diatom isolates and in situ phytoplankton assemblages, mainly composed of diatoms. Iron uptake of the diatom isolates and natural phytoplankton assemblages in the Oyashio region during spring blooms were prevented by adding hydroxamate siderophore desferrioxamine B (DFB). After the addition of DFB, intracellular Fe in the diatom isolates supported 2.4–4.2 cell divisions with 1.2–2.6 Chl a doublings. The intracellular Fe was primarily used for cell generation rather than Chl a production, leading to a reduction in the Chl a cell quota in the Fe-starved cells with time. The metabolic properties of the Fe-starved cells with their cell morphologies were different among species or genera. An on-deck incubation experiment also exhibited 1.9 cell divisions and 0.81 Chl a doublings of phytoplankton after the addition of DFB, also indicating the preference of cell generation over Chl a production. A decrease in the level of cellular Chl a, a main light-harvesting pigment in Fe-starved diatoms, may become a superior survival strategy to protect the cells from high irradiance that can cause photo-oxidative damages through photosynthesis. Such relatively low-Fe with high-light conditions could often occur in surface waters of the Oyashio region from spring to summer.  相似文献   
6.
The global ocean Chlorofluorocarbon (CFC-11) was simulated in an offline model driven by re-analysis ocean currents in order to identify the mechanisms of interannual to interdecadal variability of air?Csea CFC fluxes. The model was forced with the observed anthropogenic perturbations of atmospheric CFC-11 from the post industrial period (1938) following the OCMIP-II flux protocols along with the observed winds from 1960 to 1999 in the formulation of surface gas exchanges. The model ocean CFC-11 inventories, at the end of 1990s, accounted approximately 1% of the total atmospheric CFC-11, which is consistent with the corresponding observations. The mid-to-high latitude oceans were venue for strong (weak) oceanic sinks (sources) of CFC-11 during the winter (summer) months. The Southern Ocean (south of 40°S) and the North Atlantic (north of 35°N) provided two largest sinks of CFC-11, through which 31.4 and 14.6% of the global ocean CFC-11 entered, respectively. The eastern tropical Pacific Ocean exhibited large interannual variability of CFC-11 flux with a strong (weak) sink during La Ni?a (El Ni?o) years and represented 36% of the global CFC-11 flux variability. The North Atlantic and Southern Ocean were found as regions of large sink efficiency: a capacity to sink more CFC than outsource, although it reduced by 80 and 70%, respectively, in the last 40?years compared to 1960. The sink to source ratio of global ocean CFC-11 fluxes were reduced from 90 to 50% in the last 40?years. This indicates a saturation of CFC in the above-thermocline subsurface that makes the upper ocean less efficient in absorbing CFC in recent decades. A positive trend in CFC sink is now limited to the Southern Ocean, central tropical Pacific and western boundary current regions which possess active upwelling of old water with long time since last atmospheric contact. However, a globally averaged trend was a reduced CFC-11 sink, by emitting 30% of the total ocean CFC-11 that was absorbed during last 40?years.  相似文献   
7.
8.
The sea ice cover in the Arctic Ocean has been reducing and hit the low record in the summer of 2007. The anomaly was extremely large in the Pacific sector. The sea level height in the Bering Sea vs. the Greenland Sea has been analyzed and compared with the current meter data through the Bering Strait. A recent peak existed as a consequence of atmospheric circulation and is considered to contribute to inflow of the Pacific Water into the Arctic Basin. The timing of the Pacific Water inflow matched with the sea ice reduction in the Pacific sector and suggests a significant increase in heat flux. This component should be included in the model prediction for answering the question when the Arctic sea ice becomes a seasonal ice cover.  相似文献   
9.
10.
J Wang  M Ikeda  S Zhang  R Gerdes 《Climate Dynamics》2005,24(2-3):115-130
The nature of the reduction trend and quasi-decadal oscillation in Northern Hemisphere sea-ice extent is investigated. The trend and oscillation that seem to be two separate phenomena have been found in data. This study examines a hypothesis that the Arctic sea-ice reduction trend in the last three decades amplified the quasi-decadal Arctic sea-ice oscillation (ASIO) due to a positive ice/ocean-albedo feedback, based on data analysis and a conceptual model proposed by Ikeda et al. The theoretical, conceptual model predicts that the quasi-decadal oscillation is amplified by the thinning sea-ice, leading to the ASIO, which is driven by the strong positive feedback between the atmosphere and ice-ocean systems. Such oscillation is predicted to be out-of-phase between the Arctic Basin and the Nordic Seas with a phase difference of 3/4, with the Nordic Seas leading the Arctic. The wavelet analysis of the sea ice data reveals that the quasi-decadal ASIO occurred actively since the 1970s following the trend starting in the 1960s (i.e., as sea-ice became thinner and thinner), as the atmosphere experienced quasi-decadal oscillations during the last century. The wavelet analysis also confirms the prediction of such out-of-phase feature between these two basins, which varied from 0.62 in 1960 to 0.25 in 1995. Furthermore, a coupled ice-ocean general circulation model (GCM) was used to simulate two scenarios, one without the greenhouse gas warming and the other having realistic atmospheric forcing along with the warming that leads to sea-ice reduction trend. The quasi-decadal ASIO is excited in the latter case compared to the no-warming case. The wavelet analyses of the simulated ice volume were also conducted to derive decadal ASIO and similar phase relationship between the Arctic Ocean and the Nordic Seas. An independent data source was used to confirm such decadal oscillation in the upper layer (or freshwater) thickness, which is consistent with the model simulation. A modified feedback loop for the sea-ice trend and ASIO was proposed based on the previous one by Mysak and Venegas and the ice/albedo and cloud/albedo feedabcks, which are responsible for the sea ice reduction trend.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号