首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   6篇
  国内免费   9篇
大气科学   16篇
地球物理   43篇
地质学   61篇
海洋学   56篇
天文学   20篇
自然地理   12篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   12篇
  2011年   11篇
  2010年   8篇
  2009年   14篇
  2008年   6篇
  2007年   12篇
  2006年   7篇
  2005年   3篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   8篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有208条查询结果,搜索用时 0 毫秒
1.
2.
3.
Lower-tropospheric tropical synoptic-scale disturbances (TSDs) are associated with severe weather systems in the Asian Monsoon region. Therefore, exact prediction of the development and behavior of TSDs using atmospheric general circulation models is expected to improve weather forecasting for this region. Recent state-of-the art global cloud-system resolving modeling approaches using a Nonhydrostatic Icosahedral Atmospheric Model (NICAM) may improve representation of TSDs. This study evaluates TSDs over the western Pacific in output from an Atmospheric Model Intercomparison Project (AMIP)-like control experiment using NICAM. Data analysis compared the simulated and observed fields. NICAM successfully simulates the average activity, three-dimensional structures, and characteristics of the TSDs during the Northern summer. The variance statistics and spectral analysis showed that the average activity of the simulated TSDs over the western Pacific during Northern summer broadly captures that of observations. The composite analysis revealed that the structures of the simulated TSDs resemble the observed TSDs to a large degree. The simulated TSDs exhibited a typical southeast- to northwest-oriented wave-train pattern that propagates northwestward from near the equator around 150 ° E toward the southern coast of China. However, the location of the simulated wave train and wave activity center was displaced northward by approximately a few degrees of latitude from that in the observation. This displacement can be attributed to the structure and strength of the background basic flow in the simulated fields. Better representation of the background basic states is required for more successful simulation of TSDs.  相似文献   
4.
Several studies in the last 20 years have revealed that morphological asymmetry in fish can be characterized as ‘antisymmetry’. Antisymmetry is a lateral dimorphism in which each population consists of individuals with well‐developed left sides (lefties) and well‐developed right sides (righties). This dimorphism influences predator–prey interactions. In some piscivorous fishes, it has been found that predators can catch more prey of the opposite morphological type to themselves (cross‐predation) than of the same morphological type (parallel‐predation). Our previous work clarified that the predominance of cross‐predation is caused by lateralized behaviors of predators and prey that correspond to their morphological antisymmetry. Moreover, based on the results of our behavioral observations, we hypothesized that parallel‐predation can predominate when predators encounter the potential prey frontally. To test this hypothesis, in the present study we investigated the relationship between lateral morphological types of anglerfish (Lophiomus setigerus) and those of the prey fishes found in their stomachs. Anglerfish attract potential prey using their first dorsal fin (illicium) as a lure, and their frontal encounters with potential prey fishes were photographed in situ and observed in an aquarium. The results of a stomach contents analysis indicated that parallel‐predation predominated in five benthopelagic prey fish species (perches and eels). By contrast, five benthic prey fishes (gobies and weevers) exhibited the predominance of cross‐predation. These results not only demonstrate the predominance of parallel‐predation in a natural fish community, but also suggest that the relationship between morphological types of predator and prey species can be reversed depending on the lifestyle of prey.  相似文献   
5.
The saddle points are locations where the net gravitational accelerations balance. These regions are gathering more attention within the astrophysics community. Regions about the saddle points present clean, close-to-zero background acceleration environments where possible deviations from General Relativity can be tested and quantified. Their location suggests that flying through a saddle point can be accomplished by leveraging highly nonlinear orbits. In this paper, the geometrical and dynamical properties of the Sun–Earth saddle point are characterized. A systematic approach is devised to find ballistic orbits that experience one or multiple passages through this point. A parametric analysis is performed to consider spacecraft initially on \(L_{1,2}\) Lagrange point orbits. Sun–Earth saddle point ballistic fly-through trajectories are evaluated and classified for potential use. Results indicate an abundance of short-duration, regular solutions with a variety of characteristics.  相似文献   
6.
We have obtained infrared and Raman spectra for garnets synthesized at high (static) pressures and temperatures along the join Mg3Al2Si3O12 (pyrope) — Mg4Si4O12 (magnesium majorite). The vibrational spectra of Mg-majorite show a large number of additional weak peaks compared with the spectra of cubic pyrope garnet, consistent with tetragonal symmetry for the MgSiO3 garnet phase. The Raman bands for this phase show no evidence for line broadening, suggesting that Mg and Si are ordered on octahedral sites in the garnet. The bands for the intermediate garnet compositions are significantly broadened compared with the end-members pyrope and Mg-majorite, indicating cation disorder in the intermediate phases. Solid state 27Al NMR spectroscopy for pyrope and two intermediate compositions show that Al is present only on octahedral sites, so the cation disorder is most likely confined to Mg-Al-Si mixing on the octahedral sites. We have also obtained a Raman spectrum for a natural, shock-produced (Fe,Mg) majorite garnet. The sharp Raman peaks suggest little or no cation disorder in this sample.  相似文献   
7.
The search for radio spectral lines from Comet Sugano-Saigusa-Fujikawa (1983e) was conducted using the 45-m telescope of Nobeyama Radio Observatory. The frequency ranges of 44.0–46.0 and 47.5–49.5 GHz were surveyed down to ΔTA1 (rms) = 20–30 mK, with a beam size of ~35 arc sec. Upper limits have been established for spectral lines of atomic hydrogen, CS, OCS, SO2, H2CO, CH3OH, HCCCCCN, HCOOCH3, CH3OCH3, and CH3CH2CN. The J = 5?4 line from HCCCN in the vibrational ground state possibly has been detected but not confirmed. The suggested total amount of HCCCN in the coma is consistent with the possible picture that HCCCN is the main parent molecule of CN.  相似文献   
8.
The characteristics of the Kuroshio axis south of Kyushu, which meanders almost sinusoidally, are clarified in relation to the large meander of the Kuroshio by analyzing water temperature data during 1961–95 and sea level during 1984–95. The shape of the Kuroshio axis south of Kyushu is classified into three categories of small, medium, and large amplitude of meander. The small amplitude category occupies more than a half of the large-meander (LM) period, while the medium amplitude category takes up more than a half of the non-large-meander (NLM) period. Therefore, the amplitude and, in turn, the curvature of the Kuroshio axis is smaller on average during the LM period than the NLM period. The mean Kuroshio axis during the LM period is located farther north at every longitude south of Kyushu than during the NLM period, with a slight difference west of the Tokara Islands and a large difference to the east. A northward shift of the Kuroshio axis in particular east of the Tokara Islands induces small amplitude and curvature of the meandering shape during the LM period. During the NLM period, the meandering shape and position south of Kyushu change little with Kuroshio volume transport. In the LM formation stage, the variation of the Kuroshio axis is small west of the Tokara Islands but large to the east due to a small meander of the Kuroshio. In the LM decay stage, the Kuroshio meanders greatly south of Kyushu and is located stably near the coast southeast of Kyushu. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
9.
Properties of coastal trapped waves when the pycnocline intersects a sloping bottom are studied using a two-layer model which has slopes in both layers. In this system there is an infinite discrete sequence of modes, and four different sorts of waves exist: the barotropic Kelvin wave, the upper shelf wave, the lower shelf wave and the internal Kelvin-type wave. They all propagate with the coast to their right in the Northern Hemisphere. The upper and lower shelf waves are due to the topographic-effect on the upper-layer and lower-layer slopes, respectively. Their motions are dominant in the respective layers being accompanied by significant interface elevations. The properties of the upper (lower) shelf wave are almost unaffected by the existence of a lower-layer (upper-layer) slope. The motion of the internal Kelvin-type wave is confined to the region around the line where the density interface intersects the bottom slope.The modes, except that with the fastest phase speed (the barotropic Kelvin wave), are assigned mode numbers in order of descending frequency. Characteristics of Mode 1 change with wavenumber; the upper shelf wave for small wavenumbers and the internal Kelvin-type wave for large wavenumbers (high frequencies). The higher modes of Mode 2 and above can be classified into the upper and lower shelf waves.  相似文献   
10.
Hydrographic data show that the meridional deep current at 47°N is weak and southward in northeastern North Pacific; the strong northward current expected for an upwelling in a flat-bottom ocean is absent. This may imply that the eastward-rising bottom slope in the Northeast Pacific Basin contributes to the overturning circulation. After analysis of observational data, we examine the bottom-slope effect using models in which deep water enters the lower deep layer, upwells to the upper deep layer, and exits laterally. The analytical model is based on geostrophic hydrostatic balance, Sverdrup relation, and vertical advection–diffusion balance of density, and incorporates a small bottom slope and an eastward-increasing upwelling. Due to the sloping bottom, current in the lower deep layer intensifies bottomward, and the intensification is weaker for larger vertical eddy diffusivity (K V), weaker stratification, and smaller eastward increase in upwelling. Varying the value of K V changes the vertical structure and direction of the current; the current is more barotropic and flows further eastward as K V increases. The eastward current is reproduced with the numerical model that incorporates the realistic bottom-slope gradient and includes boundary currents. The interior current flows eastward primarily, runs up the bottom slope, and produces an upwelling. The eastward current has a realistic volume transport that is similar to the net inflow, unlike the large northward current for a flat bottom. The upwelling water in the upper deep layer flows southward and then westward in the southern region, although it may partly upwell further into the intermediate layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号