首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
测绘学   2篇
大气科学   1篇
地质学   1篇
天文学   1篇
  2017年   1篇
  2016年   2篇
  2013年   1篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Theoretical and Applied Climatology - The rise in the earth’s surface and water temperature is part of the effect of climatic change that has been observed for the last decade. The rates of...  相似文献   
2.
3.
Saltcedar (Tamarix ramosissima), an invasive shrub species, has successfully invaded large extents of several riparian zones in the western United States and northern Mexico. Mapping the distribution and abundance of saltcedar over these large areas through a multi-seasonal, cost-effective monitoring approach using satellite remote sensing is very essential. Ground truth surveys were conducted at 79 locations where the spectral reflectance measurements of vegetation, type of plant species, plant heights, soil samples and GPS co-ordinates were recorded. All the sampling was designed to coincide with the satellite overpass period. The Landsat TM colour-composite spectral ratio image (normalized difference vegetative index (NDVI), R 1,5 and R 1,7 as green, blue and red) can clearly identify and map the areas infested with saltcedar. The Landsat image analysis shows that these spectral ratios can be applied to multiple satellite overpasses for monitoring the seasonal progression of the saltcedar growth over time.  相似文献   
4.
5.
The accumulation of heavy metals in the biosolid amended soils and the risk of their uptake into different plant parts is a topic of great concern. This study examines the accumulation of several heavy metals and nutrients in soybeans grown on biosolid applied soils and the use of remote sensing to monitor the metal uptake and plant stress. Field and greenhouse studies were conducted with soybeans grown on soils applied with biosolids at varying rates. The plant growth was monitored using Landsat TM imagery and handheld spectroradiometer in field and greenhouse studies, respectively. Soil and plant samples were collected and then analyzed for several elemental concentrations. The chemical concentrations in soils and roots increased significantly with increase in applied biosolid concentrations. Copper (Cu) and Molybdenum (Mo) accumulated significantly in the shoots of the metal-treated plants. Our spectral and Landsat TM image analysis revealed that the Normalized Difference Vegetative Index (NDVI) can be used to distinguish the metal stressed plants. The NDVI showed significant negative correlation with increase in soil Cu concentrations followed by other elements. This study suggests the use of remote sensing to monitor soybean stress patterns and thus indirectly assess soil chemical characteristics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号