首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   1篇
地质学   1篇
天文学   1篇
  2020年   1篇
  2010年   1篇
  2001年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
A novel fully-automated airborne gas chromatograph for in situmeasurements of long-lived stratospheric tracers hasbeen developed, combining the high selectivity of a megabore PLOTcapillary column with recently developed sampling and separationtechniques. The Gas cHromatograph for theObservation of Stratospheric Tracers (GHOST)has been successfully operated during three STREAM campaigns(Stratosphere TRoposphere Experiment byAirborne Measurement) onboard a Cessna Citation IIaircraft in two different modes: Either N2O andCF2Cl2(CFC-12) or CFC-12 and CFCl3 (CFC-11) have been measuredsimultaneously, with a time resolution of 2 min for both modes.Under flight conditions the instrument precision (1) forthese species is better than 0.9%, and the accuracy(1) is better than 2.0% of the tropospheric values ofall measured compounds. The detection limits (3) arebelow 28 ppb for N2O, 14 ppt for CFC-12, and 8 ppt forCFC-11, respectively, i.e., well below 10 % of the troposphericvalues of all measured compounds. Post-mission optimization of thechromatographic separation showed a possible enhancement of thetime resolution by up to a factor of 2, associated with acomparable increase in precision and detection limit. As test ofactual performance of GHOST results from an in-flight N2Ointercomparison with a tunable diode laser absorptionspectrometer (TDLAS) are presented. They yield an excellentagreement between both instruments. Furthermore, on the basis ofthe hitherto most extensive set of upper tropospheric and lowerstratospheric data, the relative stratospheric N22O lifetime isre-assessed. When referenced to the WMO reference CFC-11 lifetimeof 45 ± 7 years an N2O lifetime of 91 ± 15 yearsis derived, a value substantially smaller than the WMO referencelifetime of 120 years. Moreover, this value implies astratospheric N2O sink strength of 16.3 ± 2.7 Tg (N)yr–1 which is 30% larger than previous estimates.  相似文献   
2.
Projectile–target interactions as a result of a large bolide impact are important issues, as abundant extraterrestrial material has been delivered to the Earth throughout its history. Here, we report results of shock‐recovery experiments with a magnetite‐quartz target rock positioned in an ARMCO iron container. Petrography, synchrotron‐assisted X‐ray powder diffraction, and micro‐chemical analysis confirm the appearance of wüstite, fayalite, and iron in targets subjected to 30 GPa. The newly formed mineral phases occur along shock veins and melt pockets within the magnetite‐quartz aggregates, as well as along intergranular fractures. We suggest that iron melt formed locally at the contact between ARMCO container and target, and intruded the sample causing melt corrosion at the rims of intensely fractured magnetite and quartz. The strongly reducing iron melt, in the form of μm‐sized droplets, caused mainly a diffusion rim of wüstite with minor melt corrosion around magnetite. In contact with quartz, iron reacted to form an iron‐enriched silicate melt, from which fayalite crystallized rapidly as dendritic grains. The temperatures required for these transformations are estimated between 1200 and 1600 °C, indicating extreme local temperature spikes during the 30 GPa shock pressure experiments.  相似文献   
3.
This paper deals with multiscale modeling of poloidal and toroidal fields such as geomagnetic field and currents. The wavelets are developed from scale-dependent regularizations of the Green function with respect to the Beltrami operator. They are constructed as to be locally compact, thus, allowing a locally reflected (zooming-in) reconstruction of the geomagnetic quantities. Finally, a reconstruction algorithm is indicated in form of a tree algorithm.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号