首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   2篇
大气科学   5篇
地球物理   2篇
地质学   8篇
海洋学   2篇
  2018年   3篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2001年   1篇
  1994年   1篇
  1992年   1篇
  1978年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Biominerals are natural composite materials comprising organic and inorganic components. Detailed knowledge of the nature and distribution of both components is a crucial requirement in order to advance our understanding of biomineral formation, their material properties and preservation potential as well as the interpretation of environmental data. Detailed chemical data are essential for our understanding of the nature and distribution of such components. Micro-XANES mapping at the sulphur K-edge reveals that, in the brachiopod Terebratulina retusa, the sulphate concentration is higher in the outer (primary) layer than in the calcite fibres of the secondary layer. This is co-incident with a higher magnesium concentration. In contrast, the sheaths surrounding the calcite fibres contain sulphur as thiol, confirming the presence of protein while, the sulphur within the fibres themselves, occurs as sulphate. Micro-XANES analysis of the insoluble organic extract from T. retusa indicates the presence of organic sulphate while Micro-Raman spectroscopy confirms that structurally substituted sulphate (SSS) is also present although semi-quantitative Raman spectroscopy carried out in this spectral region (wavenumbers 900–1200) indicates that the sulphate present is at the threshold of detection by Raman spectroscopy. The distribution of phosphorus in the shell of T. retusa correlates well with that of protein indicating the presence of phosphorylated proteins in the periostracum, the sheaths surrounding the calcite fibres and the interface between the primary and secondary layer.  相似文献   
2.
3.
4.
A Forest SO2 Absorption Model (ForSAM) was developed to simulate (1) SO2 plume dispersion from an emission source, (2) subsequent SO2 absorption by coniferous forests growing downwind from the source. There are three modules: (1) a buoyancy module, (2) a dispersion module, and (3) a foliar absorption module. These modules were used to calculate hourly abovecanopy SO2 concentrations and in-canopy deposition velocities, as well as daily amounts of SO2 absorbed by the forest canopy for downwind distances to 42 km. Model performance testing was done with meteorological data (including ambient SO2 concentrations) collected at various locations downwind from a coal-burning power generator at Grand Lake in central New Brunswick, Canada. Annual SO2 emissions from this facility amounted to about 30,000 tonnes. Calculated SO2 concentrations were similar to those obtained in the field. Calculated SO2 deposition velocities generally agreed with published values.Notation c air parcel cooling parameter (non-dimensional) - E foliar absorption quotient (non-dimensional) - f areal fraction of foliage free from water (non-dimensional) - f w SO2 content of air parcel - h height of the surface layer (m) - H height of the convective mixing layer (m) - H stack stack height (m) - k time level - k drag coefficient of drag on the air parcel (non-dimensional) - K z eddy viscosity coefficient for SO2 (m2·s–1) - L Monin-Obukhov length scale (m) - L A single-sided leaf area index (LAI) - n degree-of-sky cloudiness (non-dimensional) - N number of parcels released with every puff (non-dimensional) - PAR photosynthetically active radiation (W m–2) - Q emission rate (kg s–2) - r b diffusive boundary-layer resistance (s m–1) - r c canopy resistance (s m–1) - r cuticle cuticular resistance (s m–1) - r m mesophyllic resistance (s m–1) - r s stomatal resistance (s m–1) - r exit smokestack exit radius (m) - R normally distributed random variable with mean of zero and variance of t (s) - u * frictional velocity scale, (m s–1) - v lateral wind vector (m s–1) - v d SO2 dry deposition velocity (m s–1) - VCD water vapour deficit (mb) - z can mean tree height (m) - Z zenith position of the sun (deg) - environmental lapse rate (°C m–1) - dry adiabatic lapse rate (0.00986°C m–1) - von Kármán's constant (0.04) - B vertical velocities initiated by buoyancy (m s–1) - canopy extinction coefficient (non-dimensional) - ()a denotes ambient conditions - ()can denotes conditions at the top of the forest canopy - ()h denotes conditions at the top of the surface layer - ()H denotes conditions at the top of the mixed layer - ()s denotes conditions at the canopy surface - ()p denotes conditions of the air parcels  相似文献   
5.
6.
The creation of ‘usable science’ is widely promoted by many environmental change focused research programs. Few studies however, have examined the relationship between research conducted as part of such programs and the decision-making outcomes that the work is supposed to advance, and is constrained by limited methodological development on how to empirically assess the ‘usability’ of science. Herein, this paper develops a conceptual model and assessment rubric to quantitatively and systematically evaluate the usability of climate change research for informing decision-making. We focus on the process through which data is collected, analyzed and reported and examine the extent to which key principles of usable science are integrated into project design, using grant proposals as our data source. The approach is applied to analyze climate change research conducted as part of the International Polar Year in Canada, with 23 projects identified as having explicit goals to inform decision-making.While the creation of usable science was promoted by funded projects in the International Polar Year, this was not generally reflected in research design: fewer than half determined objectives with input of decision makers, decision context was not widely considered, and knowledge users were not widely reported to be engaged in assessing the quality of data or in resolving conflict in evidence. The importance of science communication was widely emphasized, although only 8/23 projects discussed tailoring specific results for end user needs. Thus while International Polar Year research has made significant advances in understanding the human dimensions of Arctic climate change, key attributes necessary for determining success in linking science to decision-making (pertinence, quality, timeliness) were not captured by many projects. Integrating these attributes into research design from the outset is essential for creating usable science, and needs to be at the forefront of future research programs which aim to advance societal outcomes. The framework for assessing usability here, while developed and tested in an Arctic climate change context, has broader applicability in the general environmental change field.  相似文献   
7.
Endemic malaria in most of the hot and humid African climates is the leading cause of morbidity and mortality. In the last twenty or so years the incidence of malaria has been aggravated by the resurgence of highland malaria epidemics which hitherto had been rare. A close association between malaria epidemics and climate variability has been reported but not universally accepted. Similarly, the relationship between climate variability, intensity of disease mortality and morbidity coupled with socio-economic factors has been mooted. Analyses of past climate (temperature and precipitation), hydrological and health data (1961–2001), and socio-economics status of communities from the East African highlands confirm the link between climate variability and the incidence and severity of malaria epidemics. The communities in the highlands that have had less exposure to malaria are more vulnerable than their counterparts in the lowlands due to lack of clinical immunity. However, the vulnerability of human health to climate variability is influenced by the coping and adaptive capacities of an individual or community. Surveys conducted among three communities in the East African highlands reveal that the interplay of poverty and other socio-economic variables have intensified the vulnerability of these communities to the impacts of malaria.  相似文献   
8.
This study uses electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) to identify secondary calcite in coral skeletons. Secondary calcite appears to have nucleated on the original aragonite dissepiments, producing horizontal structures that mimic the morphology of the original coral aragonite, forming dissepiment-like meniscus structures. The Sr/Ca and δ18O of the pristine aragonite and secondary calcite were analysed by secondary ion mass spectrometry (SIMS). The effect of calcite inclusion on the mean geochemistry of the coral carbonate and subsequent sea surface temperature (SST) calculations were determined for both Sr/Ca and δ18O. Inclusion of as little as 1% secondary calcite within the primary coral aragonite elevates the Sr/Ca-derived SST by 1.2 °C and could markedly offset estimates of past tropical climate. Conversely, inclusion of 10% secondary calcite has little effect on the SST estimated from δ18O (+ 0.6 °C) indicating that this proxy is relatively robust to even large amounts of calcite. The different extents to which the two proxies would be influenced by inadvertent inclusion of such meniscus calcite demonstrate the importance of a multi-proxy approach.  相似文献   
9.
10.
Flow diversion terraces (FDT) are commonly used beneficial management practice (BMP) for soil conservation on sloped terrain susceptible to water erosion. A simple GIS‐based soil erosion model was designed to assess the effectiveness of the FDT system under different climatic, topographic, and soil conditions at a sub‐basin level. The model was used to estimate the soil conservation support practice factor (P‐factor), which inherently considered two major outcomes with its implementation, namely (1) reduced slope length, and (2) sediment deposition in terraced channels. A benchmark site, the agriculture‐dominated watershed in northwestern New Brunswick (NB), was selected to test the performance of the model and estimated P‐factors. The estimated P‐factors ranged from 0·38–1·0 for soil conservation planning objectives and ranged from 0·001 to 0·45 in sediment yield calculations for water‐quality assessment. The model estimated that the average annual sediment yield was 773 kg ha?1 yr ?1 compared with a measured value of 641 kg ha?1 yr?1. The P‐factors estimated in this study were comparable with predicted values obtained with the revised universal soil loss equation (RUSLE2). The P‐factors from this study have the potential to be directly used as input in hydrological models, such as the soil and water assessment tool (SWAT), or in soil conservation planning where only conventional digital elevation models (DEMs) are available. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号