首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   1篇
地质学   2篇
  2001年   1篇
  1997年   1篇
  1984年   1篇
排序方式: 共有3条查询结果,搜索用时 234 毫秒
1
1.
Foraminiferal assemblages were studied in northern Barents Sea core ASV 880 along with oxygen and carbon isotope measurements in planktonic (N. pachyderma sin.) and benthic (E clavatum) species. AMS C‐14 measurements performed on molluscs Yoldiella spp. show that this core provides a detailed and undisturbed record of Holocene climatic changes over the last 10000 calendar years. Surface and deep waters were very cold (<0°C) at the beginning of the Holocene. C. reniforme dominated the highly diverse benthic foraminiferal assemblage. From 10 to 7.8 cal. ka BP, a warming trend culminated in a temperature optimum, which developed between 7.8 and 6.8 cal. ka BP. During this optimum, the input of Atlantic water to the Barents Sea reached its maximum. The Atlantic water mass invaded the whole Franz Victoria Trough and was present from subsurface to the bottom. No bottom water, which would form through rejection of brine during winter, was present at the core depth (388 m). The water stratification was therefore greatly reduced as compared to the present. An increase in percentage of I. helenae/norcrossi points to long seasonal ice‐free conditions. The temperature optimum ended rather abruptly, with the return of cold polar waters into the trough within a few centuries. This was accompanied by a dramatic reduction of the abundance of C. reniforme. During the upper Holocene, the more opportunistic species E. clavatum became progressively dominant and the water column was more stratified. Deep water in Franz Victoria Trough contained a significant amount of cold Barents Sea bottom water as it does today, while subsurface water warmed progressively until about 3.7 cal. ka BP and reached temperatures similar to those of today. These long‐term climatic changes were cut by several cold events of short duration, in particular one in the middle of the temperature optimum and another, which coincides most probably with the 8.2 ka BP cold event. Both long‐ and short‐term climatic changes in the Barents Sea are associated with changes in the flow of Atlantic waters and the oceanic conveyor belt.  相似文献   
2.
Debris flows in the region of Ritigraben (Valais, Swiss Alps), which generally occur in the months of August and September, have been analyzed in relation to meteorological and climatic factors. The principal trigger mechanisms for such debris flows are abundant rain on the one hand, and snow-melt and runoff on the other hand, or a combination of both. Debris flows linked to rain are likely to be triggered when total rainfall amount over a three-day period exceeds four standard deviations, i.e., a significant extreme precipitation event. An analysis of climatological data for the last three decades in the region of Ritigraben has highlighted the fact that the number of extreme rainfall events capable of triggering debris flows in August and September has increased. Similar trends are observed for the 20th Century in all regions of Switzerland. The general rise in temperature in a region of permafrost may also play a role in the response of slope stability to extreme precipitation. At the foot of the Ritigraben, warming trends of both minimum and maximum temperatures have been particularly marked in the last two decades.  相似文献   
3.
The Monte Capanne granodiorite-rhyolite-aplite association exhibitsK-Ar ages which cluster around 7.9 m.y. Rb-Sr mineral ages andU-Pb dating on zircons, however, give 6.2 m.y. which is thepreferred age of emplacement. Evidence of subsequent eventsrelated to either dyke emplacement, or conductive/convectivecooling is provided by ages as young as 5.4 m.y. A significantheterogeneity of the whole-rock 87Sr/86Sr initial ratios, whichfall in the range 0.711–0.715, is interpreted as beingdue in part to exchanges with the low 87Sr86Sr country rocksat the deuteric stage via fluid interaction, and in part topossible different magma sources. In the geological future,these heterogeneities should be progressively smeared out bythe radioactive decay of 87Rb, but even if the system remainsperfectly closed, a residual bias in excess of 100 m.y. shouldpermanently affect the theoretical isochron ages. It is inferredthat Rb-Sr isochron ages determined on samples of Precambrianage must be regarded with caution: a residual bias may somewhatalter the information obtained even from statistically acceptableisochrons. In this respect, when great accuracy is needed forplutonic emplacement ages (to within few m.y.), U-Pb datingappears to be less sensitive to inherited components and providesmore reliable chronometric information.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号