首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   20篇
地球物理   18篇
地质学   35篇
海洋学   7篇
天文学   8篇
自然地理   12篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   7篇
  2011年   6篇
  2010年   6篇
  2009年   9篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   1篇
  1997年   4篇
  1994年   1篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1963年   1篇
  1933年   1篇
排序方式: 共有101条查询结果,搜索用时 508 毫秒
1.
2.
3.
Erosion rates surveyed using 230 erosion pins on 24 occasions over eight years (1994–2001) on forested stream banks, tributaries and forest ditches in the 0·89 km2 Nant Tanllwyth catchment, part of the Hafren Forest on Plynlimon, mid‐Wales, showed statistically significant increases of up to 40 mm a?1 in mean erosion rates during the two‐year period in which environmentally sensitive plot‐scale timber harvesting operations took place (1996–97). In the four years following timber harvesting mean erosion rates at all sites recovered to levels that were lower than before the harvesting operations began. This is attributed to increased light levels, following canopy removal, allowing vegetation to colonize exposed banks. There was a statistically significant relationship (p < 0·05) between mean erosion rate in 2000–01 (four years after harvesting) and percentage vegetation cover at erosion monitoring sites in the clearfelled (south tributaries) area though the same relationship did not hold for sites on the mainstream banks or for sites on the north (mature forest) ditch sites. The implications of natural vegetation colonization for management of such streams are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
4.
Dissolved U concentrations and activity ratios (ARs) of the U isotopes in the 238U decay series were measured in ground and surface waters as part of an investigation to delineate the water quality in a proposed uranium mining area of northwest Nebraska. In oxidizing groundwaters from 67 wells completed in the Tertiary sediments, increasing U concentrations in the direction of groundwater flow generally were associated with a maturation of the formation water as evidenced by evolutionary trends in major ion character. The increased U levels probably are associated with leaching as shown by the positive correlation between U concentrations and total dissolved solids (TDS) (r = +0.83). The inverse relationships between TDS and U ARs (r = ?0.73) and U levels and ARs (r = 0.72) indicate that the decay of excess U-234 is related to maturation of the formation water and to sediment leaching along the flowpath. The data are described by a model which incorporates etching, decay and recoil and suggests that aquifer residence time can be estimated from the TDS level.The levels of soluble U in a reducing uraniferous hydrogeologic unit near Crawford, Nebraska are affected by the proximity of the sample collection to ore. In groundwater samples having similar chemistries (Na-SO4 + Cl type), similar Ehs, and collected from a close-knit pattern, U concentrations ranged from 0.01 to 2,037 μg l?1 and ARs ranged from 0.75 to 12.6. This high variability in U levels and ARs is indicative of uranium ore in small areal studies where low ARs almost always are associated with high U concentrations.  相似文献   
5.
Arsenopyrite occurs in greisen-sulfide veins hosted by unmetamorphosed Precambrian granite and rhyolite in the Silver Mine district of southeastern Missouri, Greisenization and sulfide mineralization appear to have been a continuous depositional sequence which recorded falling temperature in a near-surface vein environment. Textural criteria imply that equilibrium existed between arsenopyrite and pyrite and that this pair crystallized in an intermediate paragenetic position between the greisen and hydrothermal stages. Thirty-eight electron microprobe spot analyses of 15 arsenopyrite crystals from the Einstein and Gabriel veins failed to disclose chemical zoning of As/S. The compositional range of the analyzed arsenopyrites is 32. 9 to 31. 0 atomic % As. A range of arsenopyrite crystallization temperature from 485°C (±15°) to 455°C (±15°) is indicated for the Gabriel vein. In contrast, arsenopyrites from the Einstein vein record a lower and broader crystallization range of 440°C (±15°) to 368°C (±15°).  相似文献   
6.
The implicit time integration scheme of Stott and Harwood (1993) was proposed as an efficient scheme for use in three-dimensional chemical models of the atmosphere. The scheme was designed for chemistry schemes using chemical families, in which species with short lifetimes are grouped into longer-lived families. Further study with more complex chemistry, more species and reactions showed the scheme to be non-convergent and unstable under certain conditions; particularly for the perturbed chemical scenarios of polar stratospheric winters. In this work the scheme has been improved by revising the treatment of families and the convergence properties of the scheme. The new scheme has been named IMPACT (IMPlicit Algorithm for Chemical Time-stepping). It remains easy to implement and produces simulations that compare well with integrations using more accurate higher order schemes.  相似文献   
7.
We assess the extent to which observed large-scale changes in near-surface temperatures over the latter half of the twentieth century can be attributed to anthropogenic climate change as simulated by a range of climate models. The hypothesis that observed changes are entirely due to internal climate variability is rejected at a high confidence level independent of the climate model used to simulate either the anthropogenic signal or the internal variability. Where the relevant simulations are available, we also consider the alternative hypothesis that observed changes are due entirely to natural external influences, including solar variability and explosive volcanic activity. We allow for the possibility that feedback processes, other than those simulated by the models considered, may be amplifying the observed response to these natural influences by an unknown amount. Even allowing for this possibility, the hypothesis of no anthropogenic influence can be rejected at the 5% level in almost all cases. The influence of anthropogenic greenhouse gases emerges as a substantial contributor to recent observed climate change, with the estimated trend attributable to greenhouse forcing similar in magnitude to the total observed warming over the 20th century. Much greater uncertainty remains in the response to other external influences on climate, particularly the response to anthropogenic sulphate aerosols and to solar and volcanic forcing. Our results remain dependent on model-simulated signal patterns and internal variability, and would benefit considerably from a wider range of simulations, particularly of the responses to natural external forcing.  相似文献   
8.
δ18O of a stalagmite collected from Shihua Cave, 50 km southwest of Beijing is analyzed. The uppermost 2 cm was sampled at about 3-year intervals by a computer-controlled microsampling device. A total of 133 samples were analyzed, covering the last 480 years. A comparison of the δ18O record with the instrumentally recorded precipitation in Beijing and Tianjin back to 1840 AD shows that high precipitation correlates with negative δ18O peaks. The long-term δ18O trend records temperature changes. Between 1620 and 1900 AD, the temperature was cooler than the average value for the 480-year record, corresponding to the Little Ice Age. Temperatures warmer than the average prevailed during 1520–1620 and 1900—present. Superimposed on the long-term trend are about 14 δ18O cycles of 30–40-year periodicity, with wet periods centered around 1985, 1955, 1910, 1880, 1840, 1800, 1760, 1730, 1690, 1660, 1630, 1600, 1560 and 1530 AD. Project supported by the National Natural Science Foundation of China (Grant No. 9615875).  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号