首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
大气科学   4篇
地球物理   1篇
地质学   2篇
  2020年   1篇
  2018年   1篇
  2006年   1篇
  2004年   1篇
  2000年   1篇
  1996年   1篇
  1992年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Russian Meteorology and Hydrology - It is shown that the snow stake measurements in central Antarctica systematically underestimate the value of the snow build-up. Two methods for the calculation...  相似文献   
2.
Meteoric smoke particles (MSPs) form through the vaporization of meteoroids and the subsequent re-condensation of metallic species in the mesosphere. Recently, iridium and platinum enrichments have been identified in Greenland ice layers and attributed to the fallout of MSPs supplying polar latitudes with cosmic matter during the Holocene. However, the MSP fallout to Antarctica during the Earth's climatic history remains essentially unknown.

We have determined iridium and platinum in deep Antarctic ice from Dome C and Vostok dated back to 240 kyrs BP. We find high super-chondritic fluxes during warm periods and low meteoric accretion during glacial times, a pattern that is opposite to any known climatic variation in dust fallout to polar regions. The proposed explanation of this accretion regime is a weaker polar vortex during warm periods, allowing peripheral air masses enriched in volcanic iridium and platinum to penetrate inland to Antarctica. The MSP signal emerges only during cold phases and is four times lower than in the Greenland ice cap where more snow accumulates. This suggests that wet deposition is an important route of cosmic material to the Earth's surface.  相似文献   

3.
A comparison is made of the Holocene records obtained from water isotope measurements along 11 ice cores from coastal and central sites in east Antarctica (Vostok, Dome B, Plateau Remote, Komsomolskaia, Dome C, Taylor Dome, Dominion Range, D47, KM105, and Law Dome) and west Antarctica (Byrd), with temporal resolution from 20 to 50 yr. The long-term trends possibly reflect local ice sheet elevation fluctuations superimposed on common climatic fluctuations. All the records confirm the widespread Antarctic early Holocene optimum between 11,500 and 9000 yr; in the Ross Sea sector, a secondary optimum is identified between 7000 and 5000 yr, whereas all eastern Antarctic sites show a late optimum between 6000 and 3000 yr. Superimposed on the long time trend, all the records exhibit 9 aperiodic millennial-scale oscillations. Climatic optima show a reduced pacing between warm events (typically 800 yr), whereas cooler periods are associated with less-frequent warm events (pacing >1200 yr).  相似文献   
4.
Three east Antarctic ice cores (Dome B, EPICA-Dome C and Komsomolskaia) give evidence for a uniform dust input to the polar plateau during the last glacial maximum (LGM)/Holocene transition (20 to 10 kyr BP) and the 87Sr/86Sr versus 143Nd/144Nd isotopic signature of the mineral particles highlights a common provenance from southern South America at that time. However, the size distribution of dust from the three ice cores highlights important differences within the east Antarctic during the LGM and shows clearly opposite regional trends during the climatic transition. Between Dome B and Dome C the timing of these changes is also different. A geographical diversity also arises from the different phasing of the short-term (multi-secular scale) dust size oscillations that are superposed at all sites on the main trends of glacial to interglacial changes. We hypothesize the dust grading is controlled by size fractionation inresponse to its atmospheric pathway, either in terms of horizontal trajectory or in altitude of transport. Such mechanism is supported also by the dust size changes observed during a volcanic event recorded in Vostok ice. Ice core dust size data suggest preferential upper air subsidence over the EDC-KMS region and easier penetration of relatively lower air masses to the DB area during the LGM. At the end of the last glacial period and during the climatic transition the region of relatively higher subsidence progressively moved southward. The scenario proposed, supported also by the LGM/Holocene regional changes of snow accumulation, likely operates even at sub-millennial time scale.  相似文献   
5.
New 87Sr/86Sr, δ13C, and δ18О chemostratigraphic data were obtained for carbonate rocks of the Lower Riphean Yusmastakh and the Vendian Starorechenskaya formations. The δ13С values in dolomites of the Yusmastakh Formation varies from–0.6 to–0.1‰ and in dolomites and dolomitic limestones of the Starorechenskaya Formation, from–1.2 to–0.4‰ PDB, and δ18О values, from 24.4 to 26.4‰ and from 25.3 to 27.6‰ SMOW, respectively. The Rb–Sr systematics of carbonate rocks was studied using the refined method of stepwise dissolution of samples in acetic acid, including chemical removal of up to one-third of the ground sample by preliminary acid leaching and subsequent partial dissolution of the rest of the sample. Owing to this procedure, secondary carbonate material is removed, which enables one to improve the quality of the Sr-chemostratigraphic data obtained. The initial 87Sr/86Sr ratios in carbonate rocks of the Yusmastakh (0.70468–0.70519) and Starorechenskaya (0.70832–0.70883) formations evidence the Riphean–Vendian boundary in the Precambrian sequence of the Anabar Uplift.  相似文献   
6.
A new ice core drilled at the Russian station of Vostok in Antarctica reached 2755 m depth in September 1993. At this depth, the glaciological time scale provides an age of 260 ky BP (±25). We refine this estimate using records of dust and deuterium in the ice and of 18O of O2 in the entrapped air. 18O of O2 is highly correlated with insolation over the last two climatic cycles if one assumes that the EGT chronology overestimates the increase of age with depth by 12% for ages older than 112 ky BP. This modified age-depth scale gives an age of 244 ky BP at 2755 m depth and agrees well with the age-depth scale of Walbroeck et al. (in press) derived by orbital tuning of the Vostok D record. We discuss the temperature interpretation of this latter record accounting for the influence of the origin of the ice and using information derived from deuterium-excess data. We conclude that the warmest period of stage 7 was likely as warm as today in Antarctica. A remarkable feature of the Vostok record is the high level of similarity of proxy temperature records for the last two climatic cycles (stages 6 and 7 versus stages 1–5). This similarity has no equivalent in other paleorecords.  相似文献   
7.
In the interpretation of the Antarctic deep ice-core data, little attention has been given to the Holocene part of the records. As far as translation of the stable isotope content in terms of temperature is concerned, this can be understood because expected temperature changes may be obscured by isotopic noise of various origins and because no 14C dating has yet been available for this type of sequence. In this article, we focus on the Dome C and Vostok cores and on a new 850-m long ice core drilled out at Komsomolskaïa by the Soviet Antarctic Expeditions. These three sites are located in East Antarctica, on the Antarctic plateau, in a region essentially undisturbed by ice-flow conditions, so that their detailed intercomparison may allow us to identify the climatically significant isotopic signal. Our results compare well with the proximal records of Southern Hemisphere high latitudes and support the existence of a warmer climatic optimum between 10 and 6 ka y BP. Maximum temperatures are reached just at the end of the last deglaciation, which confirms previous observations at high latitudes, in contrast with later dates for the Atlantic and hypsithermal optima in Europe and North America.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号