首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   1篇
测绘学   3篇
大气科学   26篇
地球物理   27篇
地质学   44篇
海洋学   42篇
天文学   41篇
自然地理   22篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   6篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   10篇
  2012年   2篇
  2011年   6篇
  2010年   11篇
  2009年   8篇
  2008年   11篇
  2007年   8篇
  2006年   9篇
  2005年   9篇
  2004年   4篇
  2003年   6篇
  2002年   11篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   5篇
  1997年   8篇
  1996年   3篇
  1995年   7篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   4篇
  1973年   1篇
  1934年   2篇
排序方式: 共有205条查询结果,搜索用时 31 毫秒
1.
The dynamics of benthic primary production and community respiration in a shallow oligotrophic, marine lagoon (Fællestrand, Denmark) was followed for 1·5 years. The shape of the annual primary production cycle was explained primarily by seasonal changes in temperature (r2 = 0·67-0·72) and daylength (r2 = 0·63), whereas temperature almost explained all variation in benthic community respiration (r2 = 0·83-0·87). On a daily basis the benthic system was autotrophic during spring and summer supplied by 'new' and 'regenerated' nitrogen and predominantly heterotrophic during fall and winter caused by light and nutrient limitation. The linear depth-relationship between porewater alkalinity and ammonium indicated that the C:N ratio of mineralized organic matter is low in spring and summer (3-6) and high in fall and winter (9-16). This is inversely related to net primary production and thus the input of labile, nitrogen-rich algal cells. Accordingly, mineralization occurred predominantly in the upper 2-5 cm of the sediment. The pool of reactive material (microalgal cells) was estimated to account for 12% of total organic carbon in the upper 3 cm, and had an average turnover time of less than 1 month in summer. Assimilation of organic carbon by benthic animals was equivalent to about 30% of the annual gross primary production. Grazing reduced chlorophyll a concentration in the sediment during summer and spring to values 30-40% lower than in winter, but maintained a 3-4 times higher specific microalgal productivity. The rapid turnover of organic carbon and nitrogen, and important role of benthic microalgae showed that the benthic community in this oligotrophic lagoon is of a very dynamic nature.  相似文献   
2.
The concentrations of total carbonate (Ct), sulphate, sulphide, thiols and oxygen, the ratio between the stable sulphur isotopes 34S and 32S in sulphate and sulphide, and the density (used to calculate salinity) were determined on samples from the water column of Framvaren, a superanoxic fjord in southern Norway. From a depth of 18m (the oxic-anoxic boundary) the initial sulphate concentration, ([SO4]init), as calculated from salinity, is significantly higher than the sum of the measured sulphur species. This is attributed to a loss of sulphur from the water column. The amount of total carbonate produced, corrected for the initial concentration (Ct - 2.4 Sal/35) is found to be proportional to the amount of sulphate consumed, ([SO4]init - [SO4]), according to the following relation Ct- 2.4 Sal/35 = 1.84 ([SO4]init - [SO4]). Isotopic fractionation caused by bacterial sulphate reduction in the anoxic part of the water column produces sulphide with a δ34S 40‰ lower than the δ34S for sulphate at corresponding depths. The isotopic fractionation also results in δ34S value for the remaining sulphate at depths below 80 m being considerably higher than the mean value for ocean water, which is close to + 20‰. The δ34S values for sulphate at depths between 10 and 50 m were lower than + 20‰ which indicates oxidation of sulphide, which follows upon diffusion of sulphide from deeper parts of the water column and inflow of oxygenated seawater over the sill into the anoxic water of the fjord. A conclusive scenario of the Framvaren sulphur chemistry is presented.  相似文献   
3.
Historical data of total dissolved inorganic carbon (CT), together with nitrate and phosphate, have been used to model the evolution of these constituents over the year in the Atlantic water of the Norwegian Sea. Changes in nutrient concentration in the upper layer of the ocean are largely related to biological activity, but vertical mixing with the underlying water will also have an impact. A mixing factor is estimated and used to compute the entrainment of these constituents into the surface water from below. After taking the mixing contribution into account, the resulting nutrient concentration changes are attributed to biological production or decay. The results of the model show that the change in CT by vertical mixing and by biological activity based on nutrient equivalents needs another sink to balance the carbon budget. It cannot be the atmosphere as the surface water is undersaturated with respect to carbon dioxide and is, thus, a source of CT in this region. Inasmuch as the peak deficit of carbon is more than a month later than for the nutrients, the most plausible explanation is that other nitrogen and phosphate sources than the inorganic salts are used together with dissolved inorganic carbon during this period. As nitrate and phosphate show a similar trend, it is unlikely that the explanation is the use of ammonia or nitrogen fixation but rather dissolved organic nitrogen and phosphate, while dissolved organic carbon is accumulating in the water.  相似文献   
4.
Framvaren, a super-anoxic fjord in southern Norway, contains 7–8 mmoll−1 of sulphide and a total carbonate concentration of 18.5 mmol kg−1 in the bottom water. The chemistry of calcium has been studied, considering sources, biogenic and chemical processes and sedimentary sinks. Calcium associated with the bacteria biomass at the redox interface (18m depth) appears to be the primary source of dissolved calcium in the deep, anoxic water. Excess calcium and high total carbonate cause supersaturation of calcite, which is precipitated chemogenically. Calcite (and presumably some aragonite) is identified both in sediment trap material and the bottom sediments below the depth of supersaturation.  相似文献   
5.
6.
The strength of the Sun's polar fields   总被引:3,自引:0,他引:3  
The magnetic field strength within the polar caps of the Sun is an important parameter for both the solar activity cycle and for our understanding of the interplanetary magnetic field. Measurements of the line-of-sight component of the magnetic field generally yield 0.1 to 0.2 mT near times of sunspot minimum. In this paper we report measurements of the polar fields made at the Stanford Solar Observatory using the Fe i line 525.02 nm. We find that the average flux density poleward of 55° latitude is about 0.6 mT peaking to more than 1 mT at the pole and decreasing to 0.2 mT at the polar cap boundary. The total open flux through either polar cap thus becomes about 3 × 1014 Wb. We also show that observed magnetic field strengths vary as the line-of-sight component of nearly radial fields.  相似文献   
7.
For more than hundred years it has been debated whether blockfields in mountain summit areas can be used to delimit the vertical extent of Pleistocene ice sheets. In this study the relationship between blockfields, developed in quartzites and sandstones on the Varanger Peninsula, northern Norway, and glacially derived features have been evaluated. Erratics and circular ablation moraines are superimposed on the blockfields and lateral meltwater channels are eroded into them. Glacial striations and other signs of glacial sculpturing are restricted to low-lying areas with channelled ice flow. Relative ages of the blockfields and the features in them are inferred, and the first measurements of in-situ produced cosmogenic nuclides from the Varanger Peninsula are reported. We conclude that the blockfields have survived underneath at least one thick, cold-based ice sheet. Thus, these blockfields cannot be used as indicators of ice-free conditions as previously suggested for southern Norway. Our results have implications for the potential for land surface preservation beneath ice sheets and for glacial reconstructions in northern Fennoscandia.  相似文献   
8.
An analysis of cup-anemometer dynamics has been carried out inorder to determine whether the mean-wind velocity can have anegative bias. This would be contrary to the general belief thatcup anemometers always overspeed. Compared to prior analyses, theeffect of a possible nonlinearity of the calibration function isincluded. The conclusion is that neither longitudinal nor lateralvelocity fluctuations can contribute significantly to a negativebias. However, if a cup anemometer has an angular response thatfalls below the ideal cosine response, there will, as demonstratedin the concluding discussion, be a negative contribution from thevertical velocity fluctuations to the total bias, and thiscontribution may even outbalance the positive contributions fromthe longitudinal velocity fluctuations. Concrete evidence of suchexotic cup anemometer behaviour has not been reported in theliterature.  相似文献   
9.
10.
High-resolution lithostratigraphy, mineral magnetic, carbon, pollen, and macrofossil analyses, and accelerator mass spectrometry 14C measurements were performed in the study of a sediment sequence from Lake Tambichozero, southeastern Russian Karelia, to reconstruct late-glacial and early Holocene aquatic and terrestrial environmental changes. The lake formed ca. 14,000 cal yr B.P. and the area around the lake was subsequently colonized by arctic plants, forming patches of pioneer communities surrounded by areas of exposed soil. A minor rise in lake productivity and the immigration of Betula pubescens occurred ca. 11,500 cal yr B.P. The rise in summer temperatures probably led to increased melting of remnant ice and enhanced erosion. The distinct increase in lake productivity and the development of open Betula-Populus forests, which are reconstructed based on plant macrofossil remains, indicate stable soils from 10,600 cal yr B.P. onward. Pinus and Picea probably became established ca. 9900 cal yr B.P.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号