首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
大气科学   5篇
地质学   1篇
  2020年   1篇
  2013年   2篇
  2009年   2篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Kusunoki  Hidehiro  Kido  Shoichiro  Tozuka  Tomoki 《Climate Dynamics》2020,54(11):4865-4875
Climate Dynamics - Ningaloo Niño/Niña is the dominant mode of interannual variability of sea surface temperature (SST) in the southeastern Indian Ocean. According to previous studies,...  相似文献   
2.
Present-day (1979–2003) and future (2075–2099) simulations of mean and extreme rainfall and temperature are examined using data from the Meteorological Research Institute super-high-resolution atmospheric general circulation model. Analyses are performed over the 20-km model grid for (1) a main Caribbean basin, (2) sub-regional zones, and (3) specific Caribbean islands. Though the model’s topography underestimates heights over the eastern Caribbean, it captures well the present-day spatial and temporal variations of seasonal and annual climates. Temperature underestimations range from 0.1 °C to 2 °C with respect to the Japanese Reanalysis and the Climatic Research Unit datasets. The model also captures fairly well sub-regional scale variations in the rainfall climatology. End-of-century projections under the Intergovernmental Panel on Climate Change SRES A1B scenario indicate declines in rainfall amounts by 10–20 % for most of the Caribbean during the early (May–July) and late (August–October) rainy seasons relative to the 1979–2003 baselines. The early dry season (November–January) is also projected to get wetter in the far north and south Caribbean by approximately 10 %. The model also projects a warming of 2–3 °C over the Caribbean region. Analysis of future climate extremes indicate a 5–10 % decrease in the simple daily precipitation intensity but no significant change in the number of consecutive dry days for Cuba, Jamaica, southern Bahamas, and Haiti. There is also indication that the number of hot days and nights will significantly increase over the main Caribbean basin.  相似文献   
3.
Summer monsoon rainfall was simulated by a global 20 km-mesh atmospheric general circulation model (AGCM), focusing on the changes in the summer monsoon rainfall of Bangladesh. Calibration and validation of AGCM were performed over Bangladesh for generating summer monsoon rainfall scenarios. The model-produced summer monsoon rainfall was calibrated with a ground-based observational data in Bangladesh during the period 1979–2003. The TRMM 3B43 V6 data are also used for understanding the model performance. The AGCM output obtained through validation process made it confident to be used for near future and future summer monsoon rainfall projection in Bangladesh. In the present-day (1979–2003) climate simulations, the high-resolution AGCM produces the summer monsoon rainfall better as a spatial distribution over SAARC region in comparison with TRMM but magnitude may be different. Summer monsoon rainfall projection for Bangladesh was experimentally obtained for near future and future during the period 2015–2034 and 2075–2099, respectively. This work reveals that summer monsoon rainfall simulated by a high-resolution AGCM is not directly applicable to application purpose. However, acceptable performance was obtained in estimating summer monsoon rainfall over Bangladesh after calibration and validation. This study predicts that in near future, summer monsoon rainfall on an average may decrease about ?0.5 % during the period 2015–2034 and future summer monsoon rainfall may increase about 0.4 % during the period 2075–2099.  相似文献   
4.
A multi-model set of atmospheric simulations forced by historical sea surface temperature (SST) or SSTs plus Greenhouse gases and aerosol forcing agents for the period of 1950–1999 is studied to identify and understand which components of the Asian–Australian monsoon (A–AM) variability are forced and reproducible. The analysis focuses on the summertime monsoon circulations, comparing model results against the observations. The priority of different components of the A–AM circulations in terms of reproducibility is evaluated. Among the subsystems of the wide A–AM, the South Asian monsoon and the Australian monsoon circulations are better reproduced than the others, indicating they are forced and well modeled. The primary driving mechanism comes from the tropical Pacific. The western North Pacific monsoon circulation is also forced and well modeled except with a slightly lower reproducibility due to its delayed response to the eastern tropical Pacific forcing. The simultaneous driving comes from the western Pacific surrounding the maritime continent region. The Indian monsoon circulation has a moderate reproducibility, partly due to its weakened connection to June–July–August SSTs in the equatorial eastern Pacific in recent decades. Among the A–AM subsystems, the East Asian summer monsoon has the lowest reproducibility and is poorly modeled. This is mainly due to the failure of specifying historical SST in capturing the zonal land-sea thermal contrast change across the East Asia. The prescribed tropical Indian Ocean SST changes partly reproduce the meridional wind change over East Asia in several models. For all the A–AM subsystem circulation indices, generally the MME is always the best except for the Indian monsoon and East Asian monsoon circulation indices.  相似文献   
5.
East Asian summer monsoon simulation by a 20-km mesh AGCM   总被引:1,自引:0,他引:1  
East Asian summer monsoon climate simulated by a global 20-km mesh atmospheric general circulation model (AGCM) forced by the global sea surface temperature during the period 1979–1998 is investigated. In comparison with a lower resolution (180-km mesh) model experiment, it is revealed that the 20-km mesh AGCM shows the superiority in simulating orographic rainfall not only its location but also its amount. The Baiu frontal structure is also better simulated in the higher resolution model, which leads to stronger Baiu rainfall. The 20-km model also shows more intense extremes in precipitation. Interannual variability of June–August mean precipitation and seasonal march of the monsoon rain band are also investigated. This paper is a contribution to the AMIP-CMIP Diagnostic Sub-project on General Circulation Model Simulation of the East Asian Climate, coordinated by W.-C. Wang.  相似文献   
6.
The CLIVAR C20C project: selected twentieth century climate events   总被引:3,自引:1,他引:2  
We use a simple methodology to test whether a set of atmospheric climate models with prescribed radiative forcings and ocean surface conditions can reproduce twentieth century climate variability. Globally, rapid land surface warming since the 1970s is reproduced by some models but others warm too slowly. In the tropics, air-sea coupling allows models to reproduce the Southern Oscillation but its strength varies between models. We find a strong relationship between the Southern Oscillation in global temperature and the rate of global warming, which could in principle be used to identify models with realistic climate sensitivity. This relationship and a weak response to ENSO suggests weak sensitivity to changes in sea surface temperature in some of the models used here. In the tropics, most models reproduce part of the observed Sahel drought. In the extratropics, models do not reproduce the observed increase in the North Atlantic Oscillation in response to forcings, through internal variability, or as a combination of both.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号