首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   3篇
  2016年   1篇
  2015年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
2.
Wildfires are a common experience in Alaska where, on average, 3,775?km2 burn annually. More than 90% of the area consumed occurs in Interior Alaska, where the summers are relatively warm and dry, and the vegetation consists predominantly of spruce, birch, and cottonwood. Summers with above normal temperatures generate an increased amount of convection, resulting in more thunderstorm development and an amplified number of lightning strikes. The resulting dry conditions facilitate the spread of wildfires started by the lightning. Working with a 55-year dataset of wildfires for Alaska, an increase in the annual area burned was observed. Due to climate change, the last three decades have shown to be warmer than the previous decades. Hence, in the first 28?years of the data, two fires were observed with an area burned greater than 10,000?km2, while there were four in the last 27?years. Correlations between the Palmer Drought Severity Index and the Canadian Drought Code, against both the number of wildfires and the area burned, gave relatively low but in some cases significant correlation values. Special emphasis is given to the fire season of 2004, in which a record of 27,200?km2 burned. These widespread fires were due in large part to the unusual weather situation. Owing to the anticyclonic conditions of the summer of 2004, the composite anomaly of the 500?mb geopotential height showed above normal values. The dominance of a ridge pattern during summer resulted in generally clear skies, high temperatures, and below normal precipitation. Surface observations confirmed this; the summer of 2004 was the warmest and third driest for Interior Alaska in a century of climate observations. The fires lasted throughout the summer and only the snowfalls in September terminated them (at least one regenerated in spring 2005). Smoke from the forest fires affected the air quality. This could be demonstrated by measurements of visibility, fine particle matter, transmissivity of the atmosphere, and CO concentration.  相似文献   
3.
Abstract

This study analyzes changes in solar ultraviolet (UV) irradiances at 305 and 325?nm at selected sites located at high latitudes of both hemispheres. Site selection was restricted to the availability of the most complete UV spectroradiometric datasets of the past twenty years (1990–2011). The results show that over northern high latitudes, between 55° and 70°N, UV irradiances at 305?nm decreased significantly by 3.9% per decade, whereas UV irradiance at 325?nm remained stable with no significant long-term change. Over southern high latitudes (55°–70°S), UV irradiances did not show any significant long-term changes at either 305 or 325?nm. Changes in solar UV irradiances are discussed in the context of long-term ozone and other atmospheric parameters affecting UV variability at ground level.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号