首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
  国内免费   1篇
大气科学   5篇
地球物理   4篇
地质学   9篇
海洋学   7篇
天文学   2篇
  2018年   3篇
  2017年   2篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  1987年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
The skeletal oxygen isotope ratio of Porites corals is the most frequently used proxy of past seawater temperature and composition for tropical and subtropical oceans. However, field calibration of the proxy signals is often difficult owing to the dual dependence of skeletal oxygen isotope ratio on temperature and the oxygen isotope composition of water. We conducted tank experiments in which we grew Porites spp. colonies for 142 d in thermostated seawater at five temperature settings between 21°C and 29°C under moderate light intensity of 250 μmol m−2 s−1 with a 12:12 light:dark photoperiod. A skeletal isotope microprofiling technique applied along the major growth axis of each colony revealed that the oxygen isotope ratios of newly deposited skeleton in most colonies remained almost constant during tank incubation, thus providing an ideal situation for precise calibration of oxygen isotope ratio proxy signals. However, the oxygen isotope ratios displayed an unusually large intercolony variability (∼1‰) at each temperature setting although the mean slope (∼0.15‰ °C−1) obtained for the temperature-skeletal oxygen isotope ratio relationship was close to previous results. The intercolony variations in the oxygen isotope ratios were apparently caused by kinetic isotope effects related to variations in the skeletal growth rate rather than by species-specific variability or genetic differences within species. No correlation was found between skeletal carbon isotope ratios and temperature. The carbon isotope ratios showed significantly inverse correlation with linear growth rates, suggesting a kinetic isotope control at low growth rates. Observed intercolony variability in skeletal carbon isotope ratios (∼5‰) can be partly attributed to growth-rate-related kinetic isotope effects.  相似文献   
2.
Very few studies have conducted long-term observations of methane (CH4) flux over forest canopies. In this study, we continuously measured CH4 fluxes over an evergreen coniferous (Japanese cypress) forest canopy throughout 1?year, using a micrometeorological relaxed eddy accumulation (REA) system with tuneable diode laser spectroscopy (TDLS) detection. The Japanese cypress forest, which is a common forest type in warm-temperate Asian monsoon regions with a wet summer, switched seasonally between a sink and source of CH4 probably because of competition by methanogens and methanotrophs, which are both influenced by soil conditions (e.g., soil temperature and soil moisture). At hourly to daily timescales, the CH4 fluxes were sensitive to rainfall, probably because CH4 emission increased and/or absorption decreased during and after rainfall. The observed canopy-scale fluxes showed complex behaviours beyond those expected from previous plot-scale measurements and the CH4 fluxes changed from sink to source and vice versa.  相似文献   
3.
Volatile organic iodine compounds (VOIs) emitted from the ocean surface to the air play an important role in atmospheric chemistry. Shipboard observations were conducted in Funka Bay, Hokkaido, Japan, bimonthly or monthly from March 2012 to December 2014, to elucidate the seasonal variations of VOI concentrations in seawater and their sea-to-air iodine fluxes. The bay water exchanges with the open ocean water of the North Pacific twice a year (early spring and autumn). Vertical profiles of CH2I2, CH2ClI, CH3I, and C2H5I concentrations in the bay water were measured bimonthly or monthly within an identified water mass. The VOI concentrations began to increase after early April at the end of the diatom spring bloom, and represented substantial peaks in June or July. The temporal variation of the C2H5I profile, which showed a distinct peak in the bottom layer from April to July, was similar to the PO4 3? variation profile. Correlation between C2H5I and PO4 3? concentrations (r = 0.93) suggests that C2H5I production was associated with degradation of organic matter deposited on the bottom after the spring bloom. CH2I2 and CH2ClI concentrations increased substantially in the surface and subsurface layers (0–60 m) in June or July resulted in a clear seasonal variation of the sea-to-air iodine flux of the VOIs (high in summer or autumn and low in spring).  相似文献   
4.
We report on the ability for luxury Fe uptake and the potential for growth utilizing intracellular Fe pools for 4 coastal centric diatom isolates and in situ phytoplankton assemblages, mainly composed of diatoms. Iron uptake of the diatom isolates and natural phytoplankton assemblages in the Oyashio region during spring blooms were prevented by adding hydroxamate siderophore desferrioxamine B (DFB). After the addition of DFB, intracellular Fe in the diatom isolates supported 2.4–4.2 cell divisions with 1.2–2.6 Chl a doublings. The intracellular Fe was primarily used for cell generation rather than Chl a production, leading to a reduction in the Chl a cell quota in the Fe-starved cells with time. The metabolic properties of the Fe-starved cells with their cell morphologies were different among species or genera. An on-deck incubation experiment also exhibited 1.9 cell divisions and 0.81 Chl a doublings of phytoplankton after the addition of DFB, also indicating the preference of cell generation over Chl a production. A decrease in the level of cellular Chl a, a main light-harvesting pigment in Fe-starved diatoms, may become a superior survival strategy to protect the cells from high irradiance that can cause photo-oxidative damages through photosynthesis. Such relatively low-Fe with high-light conditions could often occur in surface waters of the Oyashio region from spring to summer.  相似文献   
5.
Hydrographic observations have revealed detailed structure of the Bottom Water in the Japan Sea. The Yamato Basin Bottom Water (YBBW) exhibits higher temperatures and lower dissolved oxygen concentrations than those found in the Japan Basin Bottom Water (JBBW). Both Bottom Waters meet around the boundary region between the Yamato and the Japan Basins, forming a clear benthic front. The structure of the benthic front suggests an estuary-like water exchange between both Basins, with the inflow from the Japan Basin passing under the outflow from the Yamato Basin. It is inferred from the property distributions that the JBBW flowing into the Yamato Basin is entrained by the cyclonic circulation in the basin, and modified to become the YBBW. Vertical diffusion and thermal balance in the YBBW are examined using a box model. The results show that the effect of geothermal heating has about 70% of the magnitude of the vertical thermal diffusion and both terms cancel the advection term of the cold JBBW from the Japan Basin. The box model also estimates the turnover time and vertical diffusivity for the YBBW as 9.1 years and 3.4 × 10−3 m2s− 1, respectively.  相似文献   
6.
Larval and juvenile Japanese temperate bass (Lateolabrax japonicus) samples were collected from a wide range of spatial gradients (covering a distance of approximately 30 km) in Chikugo estuary, Ariake Bay, Japan over a period of 8 yr (1997–2004) in order to observe changes in diet. Gut contents were studied by separating, identifying, counting, and estimating the dry weight of prey organisms. Copepod samples were collected during each cruise to observe the numerical composition, abundance, and biomass in the estuary. Considerable spatial and temporal variations were observed in copepod distributions in ambient water and the diets of the fish. Two distinctly different copepod assemblages were identified in the estuary: One in the upper estuarine turbidity maximum (ETM), dominated by a single speciesSinocalanus sinensis and the other in the lower estuary consisting of a multispecies assemblage, dominated byOithona davisae, Acartia omorii, Paracalanus parvus, andCalanus sinicus. The gut content composition of the fish in the upper estuary was dominated byS. sinensis, while in the lower estuary, it consisted ofP. parvus, O. davisae, andA. omorii. Within the size group analyzed (13.0–27.0 mm SL), the smaller individuals were found to feed on a mixed diet composed of smaller prey. The diets gradually shifted to bigger prey composed predominantly ofS. sinensis for larger size groups. Greater proportions of empty guts were recorded in the smaller individuals and dropped with increasing fish size. Higher dry biomass of copepods in the environment, as well as higher dry weights of gut contents, were recorded in the upper estuary, indicating that the upper estuarine ETM areas are important nursery grounds for the early life stages of the Japanese temperate bass. The early life stages of the Japanese temperate bass are adapted to use the upstream nursery grounds and ascending to the nursery areas to useS. sinensis is one of the key survival strategies of the Japanese temperate bass in the Chikugo estuary.  相似文献   
7.
Methane ( ${\mathrm {CH}}_{4}$ ) fluxes observed with the eddy-covariance technique using an open-path ${\mathrm {CH}}_{4}$ analyzer and a closed-path ${\mathrm {CH}}_{4}$ analyzer in a rice paddy field were evaluated with an emphasis on the flux correction methodology. A comparison of the fluxes obtained by the analyzers revealed that both the open-path and closed-path techniques were reliable, provided that appropriate corrections were applied. For the open-path approach, the influence of fluctuations in air density and the line shape variation in laser absorption spectroscopy (hereafter, spectroscopic effect) was significant, and the relative importance of these corrections would increase when observing small ${\mathrm {CH}}_{4}$ fluxes. A new procedure proposed by Li-Cor Inc. enabled us to accurately adjust for these effects. The high-frequency loss of the open-path ${\mathrm {CH}}_{4}$ analyzer was relatively large (11 % of the uncorrected covariance) at an observation height of 2.5 m above the canopy owing to its longer physical path length, and this correction should be carefully applied before correcting for the influence of fluctuations in air density and the spectroscopic effect. Uncorrected ${\mathrm {CH}}_{4}$ fluxes observed with the closed-path analyzer were substantially underestimated (37 %) due to high-frequency loss because an undersized pump was used in the observation. Both the bandpass and transfer function approaches successfully corrected this flux loss. Careful determination of the bandpass frequency range or the transfer function and the cospectral model is required for the accurate calculation of ${\mathrm {CH}}_{4}$ fluxes with the closed-path technique.  相似文献   
8.
Benthos cannot survive in strongly reduced sediments, in which the redox potential is around ?400 mV. Such sediments are typically found in inner harbors that are exposed to wastewater discharges. Field experiments were conducted to investigate the potential of sediment microbial fuel cells (SMFCs) for improving the benthic environment in such sediments. To the best of our knowledge, this has not been reported in any previous literature. Bottom sediment was collected and used to fuel an SMFC suspended 500 mm below the water surface. The sediments then were collected one year after installation, and their benthos environment was investigated. The most remarkable results are that the diversity and growth of benthos were higher in the SMFC-applied sediment than in a control sediment. The results have further strengthened that the sediment remediation was enhanced, in which the oxygen consumption rate of the sediment was reduced, and the mineralization of the organic matter was increased. Our findings suggest that SMFCs are a promising technology for the remediation of strongly reduced sediment and for the improvement of the benthic environment.  相似文献   
9.
Response of phytoplankton to increasing CO2 in seawater in terms of physiology and ecology is key to predicting changes in marine ecosystems. However, responses of natural plankton communities especially in the open ocean to higher CO2 levels have not been fully examined. We conducted CO2 manipulation experiments in the Bering Sea and the central subarctic Pacific, known as high nutrient and low chlorophyll regions, in summer 2007 to investigate the response of organic matter production in iron-deficient plankton communities to CO2 increases. During the 14-day incubations of surface waters with natural plankton assemblages in microcosms under multiple pCO2 levels, the dynamics of particulate organic carbon (POC) and nitrogen (PN), and dissolved organic carbon (DOC) and phosphorus (DOP) were examined with the plankton community compositions. In the Bering site, net production of POC, PN, and DOP relative to net chlorophyll-a production decreased with increasing pCO2. While net produced POC:PN did not show any CO2-related variations, net produced DOC:DOP increased with increasing pCO2. On the other hand, no apparent trends for these parameters were observed in the Pacific site. The contrasting results observed were probably due to the different plankton community compositions between the two sites, with plankton biomass dominated by large-sized diatoms in the Bering Sea versus ultra-eukaryotes in the Pacific Ocean. We conclude that the quantity and quality of the production of particulate and dissolved organic matter may be altered under future elevated CO2 environments in some iron-deficient ecosystems, while the impacts may be negligible in some systems.  相似文献   
10.
Field experiments were carried out to evaluate the effect of Granulated Coal Ash (GCA) on remediation of coastal sediments in terms of removing phosphates and hydrogen sulfide. Phosphate concentrations in the sediment were kept below 0.2 mg/l after the application of GCA, whereas those in the control sites increased up to 1.0 mg/l. The concentration of hydrogen sulfide in the sediment was maintained at almost zero in the experimental sites (GCA application sites) for over one year, whereas it ranged 0.1–2.4 mg S L−1 in control sites. Meanwhile, individual number of benthos increased in the experimental sites by several orders of magnitude compared to the control sites. The major process involved in hydrogen sulfide removal by GCA was thought to be the increase in pH, which suppresses hydrogen sulfide formation. From our findings, we concluded that GCA is an effective material for remediating organically enriched coastal sediment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号