首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   2篇
  国内免费   2篇
大气科学   24篇
地球物理   24篇
地质学   22篇
海洋学   2篇
天文学   3篇
自然地理   11篇
  2022年   1篇
  2020年   3篇
  2018年   2篇
  2017年   2篇
  2016年   9篇
  2015年   2篇
  2014年   2篇
  2013年   7篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1946年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
1.
 Fragmentation, or the "coming apart" of magma during a plinian eruption, remains one of the least understood processes in volcanology, although assumptions about the timing and mechanisms of fragmentation are key parameters in all existing eruption models. Despite evidence to the contrary, most models assume that fragmentation occurs at a critical vesicularity (volume percent vesicles) of 75–83%. We propose instead that the degree to which magma is fragmented is determined by factors controlling bubble coalescence: magma viscosity, temperature, bubble size distribution, bubble shapes, and time. Bubble coalescence in vesiculating magmas creates permeability which serves to connect the dispersed gas phase. When sufficiently developed, permeability allows subsequent exsolved and expanded gas to escape, thus preserving a sufficiently interconnected region of vesicular magma as a pumice clast, rather than fully fragmenting it to ash. For this reason pumice is likely to preserve information about (a) how permeability develops and (b) the critical permeability needed to insure clast preservation. We present measurements and calculations that constrain the conditions (vesicularity, bubble size distribution, time, pressure difference, viscosity) necessary for adequate permeability to develop. We suggest that magma fragments explosively to ash when and where, in a heterogeneously vesiculating magma, these conditions are not met. Both the development of permeability by bubble wall thinning and rupture and the loss of gas through a permeable network of bubbles require time, consistent with the observation that degree of fragmentation (i.e., amount of ash) increases with increasing eruption rate. Received: 5 July 1995 / Accepted: 27 December 1995  相似文献   
2.
Seagrass beds have declined in Chesapeake Bay, USA as well as worldwide over the past century. Increased seston concentrations, which decrease light penetration, are likely one of the main causes of the decline in Chesapeake Bay. It has been hypothesized that dense populations of suspension-feeding bivalves, such as eastern oysters (Crassostrea virginica), may filter sufficient seston from the water to reduce light attenuation and enhance seagrass growth. Furthermore, eastern oyster populations can form large three-dimensional reef-like structures that may act like breakwaters by attenuating waves, thus decreasing sediment resuspension. We developed a quasi-three-dimensional Seagrass-Waves-Oysters-Light-Seston (SWOLS) model to investigate whether oyster reefs and breakwaters could improve seagrass growth by reducing seston concentrations. Seagrass growth potential (SGP), a parameter controlled by resuspension-induced turbidity, was calculated in simulations in which wave height, oyster abundance, and reef/breakwater configuration were varied. Wave height was the dominant factor influencing SGP, with higher waves increasing sediment resuspension and decreasing SGP. Submerged breakwaters parallel with the shoreline improved SGP in the presence of 0.2 and 0.4 m waves when sediment resuspension was dominated by wave action, while submerged groins perpendicular to the shoreline improved SGP under lower wave heights (0.05 and 0.1 m) when resuspension was dominated by along-shore tidal currents. Oyster-feeding activity did not affect SGP, due to the oysters’ distance from the seagrass bed and reduced oyster filtration rates under either low or high sediment concentrations. Although the current implementation of the SWOLS model has simplified geometry, the model does demonstrate that the interaction between oyster filtration and along-shore circulation, and between man-made structures and wave heights, should be considered when managing seagrass habitats, planning seagrass restoration projects, and choosing the most suitable methods to protect shorelines from erosion.  相似文献   
3.
This paper investigates a resettlement program for communities impacted by volcanic hazards from Mayon volcano in the Philippines. Two resettlement sites are selected, the first FVR–FNM village (named after President Fidel V. Ramos and Mayor Florencio N. Munoz) was settled after the 1993 eruption. The second, Bungkaras Village, was settled after the 2006 eruption and associated typhoon Reming lahar event. These two sites were selected in order to explore the process of relocation over the short and longer term, although the main focus of the study is in the more recently settled Bungkaras Village. The overall aim is to determine if exposure to volcanic hazards has decreased without adding to vulnerability through loss of livelihood, community and culture, and exposure to new risks. A mixed method qualitative approach was utilized including semistructured interviews, participant observations, and a participatory workshop. This enabled an in-depth understanding of life and the challenges faced at the resettlement sites vis-à-vis the original settlements. In order to document the process of site selection, planning, and building, semistructured interviews were conducted with key government officials, emergency managers, and donors of the resettlement projects. This research demonstrates that a volcanic resettlement program must be directed by meaningful consultation with the impacted community who also share in the decision making. Successful resettlement must consider aspects of livelihood security, house design, and the availability of public and lifeline facilities.  相似文献   
4.
Past heavy precipitation events in the Chicago metropolitan area have caused significant flood-related economic and environmental damages. A key component in flood management policies and actions is determining flood magnitudes for specified return periods. This is a particularly difficult task in areas with a complex and changing climate and land-use, such as the Chicago metropolitan area. The standard design storm methodology based on the NOAA Atlas 14 and ISWS Bulletin 70 has been used in the past to estimate flood hydrographs with variable return periods in this region. In a changing climate, however, these publications may not be accurate. This study presents and illustrates a methodology for diagnostic analysis of future climate scenarios in the framework of urban flooding, and assesses the corresponding uncertainties. First, the design storms are calculated using data downscaled by a regional climate model (RCM) at 30-km spacing for the present and 2050s under the IPCC A1Fi (high) and B1 (low) emissions scenarios. Next, the corresponding flood discharges at six watersheds in suburban Chicago are estimated using a hydrologic event model. The resulting scenarios in flood frequency were first assessed through a set of diagnostic tests for precipitation timing and frequency. The study did not reveal any significant changes in the 2050s in the average timing of heavy storms, but their regularity decreased. The average timing did not exhibit any significant spatial variability throughout the region. The precipitation frequency analysis revealed distinct differences between the northern and southeastern subregions of the Chicago metropolitan area. The quantiles in the northern subregion averaged for 2-year, 5-year, and 10-year return periods exhibited a 20% and 16% increase in daily precipitation for scenarios B1 and A1Fi, respectively. The southeastern subregion, however, exhibited a decrease of 12% for scenario B1 and a minor increase of 3% for scenario A1Fi. The hydrologic effects of changing precipitation on the flood quantiles were illustrated using six small watersheds in the region. The relative increases or decreases in precipitation translated into even larger relative increases or decreases in flood peaks, due to the nonlinear nature of the rainfall-runoff process. Simulations using multiple climate models, for longer periods, finer spatio-temporal resolution, and larger areal coverage could be used to more accurately account for numerous uncertainties in the precipitation and flood projections.  相似文献   
5.
Time sequences of He i and He ii resonance line intensities at several sites within the flare of 15 June, 1973 are derived from observations obtained with the Naval Research Laboratory's Slitless Spectroheliograph on Skylab. The data are compared with predictions in six model flare atmospheres based on two values for the heating rate and three for the flux of photoionizing coronal X-rays and EUV. A peak ionizing flux more than 103 times that in the quiet Sun is indicated. For most conditions in flare kernels the He ii L and L lines are found to be formed by collisional excitation, thereby contributing to the local cooling of the plasma at temperatures above 6 × 104 K. Emission in the higher Lyman lines is generally the result of a mixture of collisional excitation at these temperatures and photoionization and recombination at temperatures near 2.5 × 104 K. We discuss implications for the common practice of deriving stellar coronal fluxes from He ii 1640 Å fluxes assuming dominance of the recombination mechanism.Chief, Quantum Physics Division, National Institute of Standards and Technology.Operated jointly by the National Institute of Standards and Technology and the University of Colorado.Operated by the National Optical Astronomy Observatories of the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   
6.
7.
Step-scanning calorimetric measurements using a Setaram HT1500 calorimeter were performed between 800 and 1400°C on two natural samples: a ugandite from the East African rift and an olivine basalt from the western Mexican arc. Our measurements provide the first in-situ quantitative assessment of enthalpy during melting of initially crystalline natural samples. The distribution of latent heat across the liquidus-solidus intervals of the two samples is distinctly different, reflecting significant variation in the sequence and abundance of mineral phases during melting (clinopyroxene and leucite in the ugandite; olivine, clinopyroxene, and plagioclase in the basalt). Our data further indicate that the common assumption of a uniform distribution of latent heat across the liquidus-solidus interval of a magma is a reasonable approximation for the olivine basalt, but is grossly in error for the ugandite. This is due to cotectic precipitation of leucite and clinopyroxene, leading to a large, disproportionate release of latent heat early in the crystallization sequence. The implication for the thermal history of a crystallizing ugandite magma is that therate of heat loss during conductive cooling will unitially be more rapid than the average rate. The net result will be to produce lower magmatic temperatures after a given cooling interval relative to models assuming a uniform release of latent heat. An additional series of scanning calorimetric experiments were performed at variable rates (1,2 and 3°/min) to evaluate the role of kinetics on the distribution of enthalpy during both melting and crystallization of the ugandite and olivine basalt. The results indicate that clinopyroxene is the most important mineral phase in controlling the shapes of the enthalpy profiles during cooling; this is due to its large enthalpy of fusion and its tendency for sluggish nucleation, followed by rapid crystallization at temperatures that vary with cooling rate. The resolution of the calorimeter (in terms of heat detected per unit time) is also important in determining the shapes of theobserved enthalpy profiles during these rapid scans. Estimates based on the observed calorimetric signal associated with melting of olivine, and the lack of a calorimetric signal during melting of leucite, combined with known enthalpies of fusion for the two phases, indicate detection limits of approximately 0.6–1.2 kJ per 5 min increments.  相似文献   
8.
Hazard maps are considered essential tools in the communication of volcanic risk between scientists, the local authorities and the public. This study investigates the efficacy of such maps for the volcanic island of Montserrat in the West Indies using both quantitative and qualitative research techniques. Normal plan view maps, which have been used on the island over the last 10 years of the crisis, are evaluated against specially produced three-dimensional (3D) maps and perspective photographs. Thirty-two demographically representative respondents of mixed backgrounds, sex, education and location were interviewed and asked to complete a range of tasks and identification on the maps and photographs. The overall results show that ordinary people have problems interpreting their environment as a mapped representation. We found respondents’ ability to locate and orientate themselves as well as convey information relating to volcanic hazards was improved when using aerial photographs rather than traditional plan view contour maps. There was a slight improvement in the use of the 3D maps, especially in terms of topographic recognition. However, the most striking increase in effectiveness was found with the perspective photographs, which enabled people to identify features and their orientation much more readily. For Montserrat it appears that well labelled aerial and perspective photographs are the most effective geo-spatial method of communicating volcanic risks.
Katharine HaynesEmail:
  相似文献   
9.
Potential changes in summertime hydroclimatology over the northeastern (NE) region of the USA induced by increases in greenhouse gas (GHG) concentrations are investigated using a state-of-the-art regional climate modeling system. Results for a higher emissions scenario illustrate changes that may occur if dependence on fossil fuels continues over the coming century. Summertime precipitation is projected to decrease across much of the central NE, but increase over the southernmost and northernmost portions of the domain. Evaporation is expected to increase across the entire domain. The balance between these two results in a decrease in soil moisture content across most of the domain (by approximately 10 mm) and an increase in the summertime soil-moisture depletion rate (by approximately 10 mm/month). At the same time, an increase in both atmospheric near-surface specific and saturation specific humidity is projected, resulting in an increase in relative humidity across the southern portion of the domain, with slight decreases over the northern portion. Combined with an average increase in summer temperatures of 3.5°C, the projected increase in relative humidity results in a marked increase in the average daily maximum heat index for the region on the order of 3.9°C, as well as a 350–400% increase in the number of days with heat index values exceeding 32.2°C (90°F)—the level of “extreme caution”. Taken together, these high-resolution, dynamically-generated projections confirm the potential for significant summertime climate change impacts on the NE over the coming century as suggested by previous studies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号