首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   1篇
地球物理   1篇
海洋学   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Sea-level and current measurements have been performed in the Mok Bay, a tidal embayment in the Dutch Wadden Sea, situated on the island of Texel, the Netherlands. Characteristic for this estuary is its nonuniform hypsometry. Oscillations in both water level and inflow of the estuary were observed, with characteristic frequencies of 31 and 48 cycles per day. The significant change in basin shape between low and high water is the cause for the existence of these two frequencies of resonance. Due to its semi-enclosed nature, the basin could at both tidal phases be characterized as a Helmholtz resonator, albeit of different dimensions. Depth measurements were performed to find these characteristic dimensions of the estuary, allowing the determination of its theoretical Helmholtz frequencies. These estimates match to within 10% with the observed frequencies, and this deviation can partly be explained. Although sea level oscillations at these frequencies have small amplitude (of order 1 cm), the accompanying oscillatory flow at the entrance is of similar magnitude as the tidal flow. The water level measurements (spanning only 8 days of data) were therefore modeled using a piecewise-uniform hypsometry that approximates the real hypsometric curve well. The simplified semi-analytical piecewise-linear viscous Helmholtz model captures the observed combination of tidal and eigenoscillations well. However, despite its simplicity, this model is able to display nonlinear behavior for certain parameter values. This is because of the intrinsic nonlinearity that accompanies the matching of the low and high water phases. In the setting studied here, bifurcations up to period 13 were found. This nonlinear type of response may be of importance in facilitating an extra exchange of sediments and nutrients between the Bay and the sea.  相似文献   
2.
Climate change and increased atmospheric CO2 concentration can impact hydrological and nitrogen cycling at the catchment scale. The objective of this study is to assess these impacts in an intensive agricultural headwater catchment in western France. A calibrated and validated agro-hydrological model was driven by output of the climate model ARPEGE under the A1B emission scenario over 30-year simulation periods. Our study indicated that with climate warming and increased atmospheric CO2, the main trends in water balance were a decrease in annual actual evapotranspiration (AET), a decrease in annual discharge and wetland extent, and a decrease in spring and summer of groundwater recharge and soil-water content. Not considering the effects of increased atmospheric CO2 in the agro-hydrological model led to overestimating discharge decrease and underestimating AET decrease and wetland extent. Climate change could influence N cycling by increasing soil N mineralisation, increasing soil denitrification in wetlands and upstream areas, and decreasing NO3–N load to streams. Since wetlands appear to be sensitive to climate change, improving modelling to better predict their responses is an important issue, especially to help plan sustainable management of these vulnerable areas.  相似文献   
3.
Radar altimetry has demonstrated strong capabilities for the monitoring of water levels of lakes, rivers and wetlands over the last 20 years. The Indo-French SARAL/AltiKa mission, launched in February 2013, is the first satellite radar altimetry mission to carry onboard a Ka-band sensor. We propose here to evaluate the potential of this new instrument for land hydrology through comparisons with other altimetry-derived stages and discharges in the Ganges-Brahmaputra and Irrawaddy river basins using its first year of data. Due to the lack of concomitant in situ measurements for the current period, Jason-2 data, previously evaluated against in situ gauge records, were used as reference. Comparisons between Jason-2 and SARAL-derived water levels and discharges, and Jason-2 and Envisat (which flew the same orbit as SARAL from 2002 to 2010)-derived ones, was performed. Time-series of only one year of SARAL-derived water levels and discharges present better performances (lower RMSE and higher R, generally greater than 0.95) than the ones derived from Envisat when compared with Jason-2.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号