首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   1篇
地球物理   2篇
  2021年   1篇
  2019年   1篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Equatorial Pacific sea surface temperature variations interact with processes of atmospheric circulation, creating conditions for the occurrence of El Niño–Southern Oscillation (ENSO). ENSO events represent the most important interannual phenomena affecting climate patterns worldwide and causing significant socio‐economic impacts. In the Brazilian territory, ENSO leads to an increase in drought episodes in the north‐eastern region and an increase in precipitation in the southern region, whereas the effects over the south‐east region are yet not well understood. The main goal of this study is to compare variations of isotopic composition in precipitation across the south‐east portion of the Brazilian territory during two very strong ENSO events: 1997–1998 (ENSO 1) and 2014–2016 (ENSO 2). Daily isotopic records, available from the Global Network of Isotopes in Precipitation database for ENSO 1, and samples collected during ENSO 2 were used to compare the influence of both events on the isotopic composition of precipitation. Seasonal variations indicated more depleted precipitation during the wet seasons (δ18O = ?5.4 ± 4.0‰) and enriched precipitation during the dry seasons (δ18O = ?2.8 ± 2.3‰). Observed rainfall variations were associated with atmospheric large‐scale processes and moisture transport from the Amazon region, whereas extreme values (enriched or depleted) appear to be associated with particular convective and stratiform precipitation events. Overall, more depleted isotopic composition of precipitation (δ18O = ?4.60‰) and higher d‐excess (up to +15‰) were observed during the dry season of ENSO 1 when compared with ENSO 2 dry season (δ18O‰ = ?2.80‰, d‐excess lower than +14‰). The latter is explained by greater atmospheric moisture content, particularly associated with recycling of transpiration fluxes from the Amazon region, during dry season of ENSO 1. No significant differences for δ18O and δ2H were observed during the wet season; however, d‐excess from ENSO 2 was greater than ENSO 1, due to the slightly greater atmospheric moisture content and very strong upward motion observed. Our findings highlight the opportunity that environmental isotopes offer towards understanding hydrometeorological processes, particularly, the evolution of extreme climatic events of global resonance such as ENSO.  相似文献   
2.
Climate Dynamics - In this study, multi-model ensembles are used to understand regional features of future climate trends of cyclones and associated winds in eastern South America. For this, we...  相似文献   
3.
This study analyzes the impacts of latent and sensible heat exchanges between the atmosphere and the ocean in a non-explosive Shapiro–Keyser type cyclogenesis event that occurred over the southwestern South Atlantic Ocean. The synoptic evolution shows a relatively strong warm front and a cold frontal fracture during the system’s development and a warm seclusion in its mature stage, characterizing a Shapiro–Keyser type cyclone. Numerical experiments with the ARW-WRF Model version 3.3 were used to investigate the influences of sensible and latent fluxes on the track of the surface low, intensity of the fronts and coupling of the lower and upper troposphere. The simulations indicate that in the presence of these fluxes the cyclone underwent greater intensification, had a longer life time and longer trajectory, and presented a typical southeastward movement. In the absence of these fluxes, the cyclone developed a weaker warm front with consequent reduction of diabatic heating due to grid scale precipitation along it. This reduced the negative pressure tendency southeast of the cyclone center and the surface cyclone moved northeastward, showing a decoupling of the lower- and upper-level waves. A consequence of this anomalous tracking is the location of the surface cyclone beneath the upper-level trough axis, where there is no upper-level divergence associated with cyclonic vorticity advection contributing to the further system intensification. Numerical experiments suggest that for this Shapiro–Keyser type cyclone the air–sea interaction processes are crucial to obtain a cyclone with features similar to the observations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号