首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   466篇
  免费   18篇
  国内免费   10篇
测绘学   18篇
大气科学   51篇
地球物理   79篇
地质学   245篇
海洋学   35篇
天文学   51篇
综合类   4篇
自然地理   11篇
  2021年   4篇
  2020年   8篇
  2018年   6篇
  2017年   9篇
  2016年   16篇
  2015年   8篇
  2014年   9篇
  2013年   15篇
  2012年   13篇
  2011年   13篇
  2010年   20篇
  2009年   18篇
  2008年   16篇
  2007年   11篇
  2006年   27篇
  2005年   16篇
  2004年   5篇
  2003年   14篇
  2002年   12篇
  2001年   9篇
  2000年   11篇
  1999年   7篇
  1998年   5篇
  1997年   14篇
  1996年   14篇
  1995年   4篇
  1994年   7篇
  1993年   7篇
  1992年   6篇
  1988年   5篇
  1987年   4篇
  1986年   7篇
  1985年   5篇
  1984年   8篇
  1983年   4篇
  1982年   4篇
  1980年   8篇
  1979年   4篇
  1978年   4篇
  1967年   4篇
  1960年   5篇
  1958年   4篇
  1956年   4篇
  1953年   4篇
  1950年   4篇
  1949年   4篇
  1948年   3篇
  1921年   4篇
  1914年   3篇
  1912年   4篇
排序方式: 共有494条查询结果,搜索用时 15 毫秒
1.
C.B Olkin  L.H Wasserman  O.G Franz 《Icarus》2003,164(1):254-259
The mass ratio of Charon to Pluto is a basic parameter describing the binary system and is necessary for determining the individual masses and densities of these two bodies. Previous measurements of the mass ratio have been made, but the solutions differ significantly (Null et al., 1993; Young et al., 1994; Null and Owen, 1996; Foust et al., 1997; Tholen and Buie, 1997). We present the first observations of Pluto and Charon with a well-calibrated astrometric instrument—the fine guidance sensors on the Hubble Space Telescope. We observed the motion of Pluto and Charon about the system barycenter over 4.4 days (69% of an orbital period) and determined the mass ratio to be 0.122±0.008 which implies a density of 1.8 to 2.1 g cm−3 for Pluto and 1.6 to 1.8 g cm−3 for Charon. The resulting rock-mass fractions for Pluto and Charon are higher than expected for bodies formed in the outer solar nebula, possibly indicating significant postaccretion loss of volatiles.  相似文献   
2.
A variety of measures of organic matter concentration and quality were made on samples collected from the top few mm of intertidal mudflat sediment over the course of a year, in order to assess the relative importance of biological and sedimentological influences on sedimentary organic matter. Winter and summer were times of relatively fine-grained sediment accumulation, caused by biological deposition or stabilization processes and resulting in higher organic matter concentrations. Stable carbon isotope and Br:C ratios indicated a planktonic source of bulk organic matter. Ratios of organic carbon to specific surface area of the sediments were consistent with an organic monolayer coverage of sediment grains. Correction for changing grain size during the year showed no change in the organic concentration per unit surface area, in spite of organic matter inputs by in situ primary production, buildup of heterotroph biomass and mucus coatings, and biodeposition of organic-rich seston. There were also no indications of changes in bulk organic quality, measured as hydrolyzable carbohydrates and amino acids, in response to these biological processes. It is concluded that biological processes on a seasonal time scale affect the bulk organic matter of these sediments via a modulation of grain size rather than creation or decay of organic matter.  相似文献   
3.
Abstract— We studied unshocked and experimentally (at 12, 25, and 28 GPa, with 25, 100, 450, and 750°C pre‐shock temperatures) shock‐metamorphosed Hospital Hill quartzite from South Africa using cathodoluminescence (CL) images and spectroscopy and Raman spectroscopy to document systematic pressure or temperature‐related effects that could be used in shock barometry. In general, CL images of all samples show CL‐bright luminescent patchy areas and bands in otherwise nonluminescent quartz, as well as CL‐dark irregular fractures. Fluid inclusions appear dominant in CL images of the 25 GPa sample shocked at 750°C and of the 28 GPa sample shocked at 450°C. Only the optical image of our 28 GPa sample shocked at 25°C exhibits distinct planar deformation features (PDFs). Cathodoluminescence spectra of unshocked and experimentally shocked samples show broad bands in the near‐ultraviolet range and the visible light range at all shock stages, indicating the presence of defect centers on, e.g., SiO4 groups. No systematic change in the appearance of the CL images was obvious, but the CL spectra do show changes between the shock stages. The Raman spectra are characteristic for quartz in the unshocked and 12 GPa samples. In the 25 and 28 GPa samples, broad bands indicate the presence of glassy SiO2, while high‐pressure polymorphs are not detected. Apparently, some of the CL and Raman spectral properties can be used in shock barometry.  相似文献   
4.
The Bering Sea is a high-latitude, semi-enclosed sea that supports extensive fish, seabird, marine mammal, and invertebrate populations and some of the world's most productive fisheries. The region consists of several distinct biomes that have undergone wide-scale population variation, in part due to fisheries, but also in part due to the effects of interannual and decadal-scale climatic variation. While recent decades of ocean observation have highlighted possible links between climate and species fluctuations, mechanisms linking climate and population fluctuations are only beginning to be understood. Here, we examine the food webs of Bering Sea ecosystems with particular reference to some key shifts in widely distributed, abundant fish populations and their links with climate variation. Both climate variability and fisheries have substantially altered the Bering Sea ecosystem in the past, but their relative importance in shaping the current ecosystem state remains uncertain.  相似文献   
5.
This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific, the oceanic region centered on the eastern Pacific warm pool, but also including the equatorial cold tongue and equatorial current system, and summarizes what is known about oceanographic influences on seabirds and cetaceans there. The eastern tropical Pacific supports on the order of 50 species of seabirds and 30 species of cetaceans as regular residents; these include four endemic species, the world’s largest populations for several others, three endemic sub-species, and a multi-species community that is relatively unique to this ecosystem. Three of the meso-scale physical features of the region are particularly significant to seabirds and cetaceans: the Costa Rica Dome for blue whales and short-beaked common dolphins, the Equatorial Front for planktivorous seabirds, and the countercurrent thermocline ridge for flocking seabirds that associate with mixed-species schools of spotted and spinner dolphins and yellowfin tuna. A few qualitative studies of meso- to macro-scale distribution patterns have indicated that some seabirds and cetaceans have species-specific preferences for surface currents. More common are associations with distinct water masses; these relationships have been quantified for a number of species using several different analytical methods. The mechanisms underlying tropical species–habitat relationships are not well understood, in contrast to a number of higher-latitude systems. This may be due to the fact that physical variables have been used as proxies for prey abundance and distribution in species–habitat research in the eastern tropical Pacific.Though seasonal and interannual patterns tend to be complex, species–habitat relationships appear to remain relatively stable over time, and distribution patterns co-vary with patterns of preferred habitat for a number of species. The interactions between seasonal and interannual variation in oceanographic conditions with seasonal patterns in the biology of seabirds and cetaceans may account for some of the complexity in species–habitat relationship patterns.Little work has been done to investigate effects of El Niño-Southern Oscillation cycles on cetaceans, and results of the few studies focusing on oceanic seabirds are complex and not easy to interpret. Although much has been made of the detrimental effects of El Niño events on apex predators, more research is needed to understand the magnitude, and even direction, of these effects on seabirds and cetaceans in space and time.  相似文献   
6.
Sidescan-sonar surveys were performed on a 2×4 km area of seafloor in the southern Baltic Sea (Pomeranian Bight) in 1996 and 1998. Overlapping sub-areas of the individual surveys showing characteristic details were processed into geographically referenced mosaics. Sediment types were identified from echo characteristics and by comparison with granulometric data. The sea bottom covered by the mosaics consists predominantly of sand, with subordinate lag sediments with stones and small ripple fields consisting of coarse sand to fine gravel. A comparison of the two mosaics did not reveal any significant changes of the sea bottom over the 2-year period. Characteristic sedimentary features remained almost unchanged over this period on detailed sonar images of smaller sub-areas. Substantial transport of sandy sediments can thus be excluded in the course of the observation period. Grid files of advective velocity components and orbital velocity of wave motion of a three-dimensional hydrodynamical model for the period from September 1996 to October 1997 were used to estimate the current regime in the study area for the interval between the two sidescan surveys. Comparing critical velocities for the dominant sediment types with the results of the numerical bottom current simulations and the observations from sidescan images, it is apparent that strong current events during the modelled time interval were still too weak to resuspend and transport sand of any grain size, even though maximum current velocities of 30 cm/s at the seafloor were modelled. Only a few patches of newly accumulated (acoustically soft) material (mud, fluff and/or soft plant remnants), with a horizontal extension of about 10 m at a terrain step feature, were recognised in the 1998 mosaic. Our results imply that sand deposits in the southern Baltic Sea can remain stationary over time periods of several years, and that the transport of organic material, nutrients and associated pollutants to depositional areas in deeper water is predominantly accomplished by the movement of material finer than sand. A significant portion of this fine material is evidently transported in the bottom boundary layer under conditions of moderate hydrodynamical forcing.  相似文献   
7.
8.
ENSO variability and the eastern tropical Pacific: A review   总被引:3,自引:0,他引:3  
El Niño-Southern Oscillation (ENSO) encompasses variability in both the eastern and western tropical Pacific. During the warm phase of ENSO, the eastern tropical Pacific is characterized by equatorial positive sea surface temperature (SST) and negative sea level pressure (SLP) anomalies, while the western tropical Pacific is marked by off-equatorial negative SST and positive SLP anomalies. Corresponding to this distribution are equatorial westerly wind anomalies in the central Pacific and equatorial easterly wind anomalies in the far western Pacific. Occurrence of ENSO has been explained as either a self-sustained, naturally oscillatory mode of the coupled ocean–atmosphere system or a stable mode triggered by stochastic forcing. Whatever the case, ENSO involves the positive ocean–atmosphere feedback hypothesized by Bjerknes. After an El Niño reaches its mature phase, negative feedbacks are required to terminate growth of the mature El Niño anomalies in the central and eastern Pacific. Four requisite negative feedbacks have been proposed: reflected Kelvin waves at the ocean western boundary, a discharge process due to Sverdrup transport, western Pacific wind-forced Kelvin waves, and anomalous zonal advections. These negative feedbacks may work together for terminating El Niño, with their relative importance being time-dependent.ENSO variability is most pronounced along the equator and the coast of Ecuador and Peru. However, the eastern tropical Pacific also includes a warm pool north of the equator where important variability occurs. Seasonally, ocean advection seems to play an important role for SST variations of the eastern Pacific warm pool. Interannual variability in the eastern Pacific warm pool may be largely due to a direct oceanic connection with the ENSO variability at the equator. Variations in temperature, stratification, insolation, and productivity associated with ENSO have implications for phytoplankton productivity and for fish, birds, and other organisms in the region. Long-term changes in ENSO variability may be occurring and are briefly discussed. This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific.  相似文献   
9.
The collection of articles in this volume reviewing eastern tropical Pacific oceanography is briefly summarized, and updated references are given. The region is an unusual biological environment as a consequence of physical characteristics and patterns of forcing – including a strong and shallow thermocline, the ITCZ and coastal wind jets, equatorial upwelling, the Costa Rica Dome, eastern boundary and equatorial current systems, low iron input, inadequate ventilation of subthermocline waters, and dominance of ENSO-scale temporal variability. Remaining unanswered questions are presented.  相似文献   
10.
 Between 2 and 6 February, 1995, a 25 km2 area at the Dry Tortugas (Florida Keys) was surveyed with a 100 kHz side-scan sonar system and 3.5-kHz subbottom profiler. The side-scan system revealed a pattern of alternating high and low backscatter. The subbottom profiler showed areas with no acoustic penetration between sediment troughs. The combination of both methods allowed delineation of the boundaries in high-backscatter regions, and sediment samples allowed correlations between high backscatter and coarser-grained sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号