首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
大气科学   24篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1990年   1篇
  1983年   1篇
  1981年   2篇
  1979年   2篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
2.
Summary In this study an attempt is made to examine and analyse the mean characteristics of the katabatic flows at the western slope foot of a 1024 m high knife edge mountain using a meteorological tower and three surface meteorological stations. In addition, the frequency distribution of the occurrence of the katabatic flow over one year period is studied along the characteristics of the flow arriving in the neighbouring urban area at a distance of 1.5 km. It was found that the katabatic flow occurs mainly in autumn and spring with the highest frequency in April. The flow is generally characterised by small depth as it is affected substantially by the background flow. The expected direction of the katabatic wind dominates mainly at the level of 7 m, where the influence of the background flow is minimised. At the level of 18 m the wind direction shifts, due to the interaction of the katabatic wind with the background flow. The katabatic flow can penetrate at a distance of 1.5 km being substantially weakened. Received September 18, 1996 Revised August 4, 1997  相似文献   
3.
Air pollution episodes in urban coastal areas follow certain pre-determined patterns, being associated with certain local meteorological conditions and emission of primary pollutants. In this study, the synoptic and local scale atmospheric circulation that prevails during air pollution episodes in a coastal major city in Greece, Thessaloniki, is examined for a period of 15 years (1989–2004). The study signifies the importance of studying air pollution meteorological patterns between coastal areas with different terrain characteristics. For Thessaloniki, it was found that the episodes occur mainly during the cold period of the year, while four types of synoptic scale circulation were recognized (I, II, III, IV) and five patterns of the local scale circulation (A1, A2, B1, B2 and B3). The highest percentage of episodes is associated with the presence of an anticyclone over the northern Greece (types I and IV), being characterized by weak or very weak surface pressure gradient intensity, according to the position and extension of the anticyclone. Moreover, a temperature increase of at least 1°C during the previous 3 days is required in the lower troposphere. Consistent with the synoptic conditions, the development of the sea breeze plays a crucial role in the occurrence of the episodes, even in the cold period of the year, when the sea breeze can still develop with smaller frequency and intensity. Finally, it was found that a small number of episodes is related with the advection of polluted air masses from the industrial area in the northwest of the city and from the Eordaia area in the west, which is the largest lignite producing area of Balkans.  相似文献   
4.
Summary  In this study an attempt is made to investigate comprehensively the dynamics of a case of cyclogenesis over the Aegean Sea within the context of the potential vorticity. At early stages the cyclogenesis is manifested by a large scale development at the upper levels over Adriatic Sea and Yugoslavia associated with an upper tropospheric potential vorticity anomaly. At later stages a smaller scale development was generated over Aegean Sea associated with a low-level potential vorticity anomaly and a surface warm anomaly. By means of a two-dimensional potential vorticity inversion it is demonstrated that the scale, the position and the strength of the involved anomalies contribute to the surface development, however, the low-level potential vorticity anomaly seems to constitute the most significant feature, more likely to be associated with condensation. Received March 2, 1999/Revised September 30, 1999  相似文献   
5.
6.
Summary The role of the subtropical jet stream (SJ) in the occurrence of heat waves in South Balkans and Greece is sought here. For this purpose ECMWF grid-point data is examined, concerning the Balkan heat wave of 5–9 July 1988, that cost human lifes, at least in Greece. For the city of Thessaloniki, Greece, a temperature budget is presented, as a function of time. It turns out that the most important heating mechanism is the adiabatic heating. Horizontal mass convergence at the maximum wind level (200 hPa) causes descent and adiabatic heating. The convergence occurs in association with the Hadley Cell, as well as with the right exit quadrant of an anticyclonically curved subtropical jet streak. As air parcels that exit the above jet streak slow down and turn anticyclonically, a strong ageostrophic wind current is established towards and to the right of the flow direction. This ageostrophic current converges above the northeastern Balkans. Downward ageostrophic motion emerges from the above area of horizontal convergence and heads towards the SSW, affecting the Balkans. From the above case study, it is concluded that intense heat waves are favoured in the South Balkans and Greece when the SJ is anticyclonically curved to the north of the Balkans and a jet streak is situated to the north west of the Balkans.  相似文献   
7.
Summary Hourly precipitation amounts recorded at the Aristotelian University of Thessaloniki for the period 1947–1985 are analysed. The contributions of each hour towards the annual, seasonal, and monthly mean diurnal variations are discussed and possible causes outlined. The probabilities of measurable precipitation occurring at any particular hour in a month and the importance of such a statistic to the tourist industry are noted.With 5 Figures  相似文献   
8.
Summary ¶Two cyclonic vortices close to each other, a binary cyclone or binary system, tend to rotate cyclonically relative to one another and to merge, i.e. the Fujiwhara effect. The point vortex model that represents barotropic binary cyclones predicts their rotation features as follows. The rotation rate is proportional linearly to the sum of the cyclones intensities and inversely to the square of their separation distance while the more intense cyclone rotates slower. Our earlier observational analysis of 1423 mid-latitude binary cyclones (Ziv and Alpert, 1995) showed a reasonable fit to theory, except for the absence of a correlation between individual speeds and intensities within the binary systems, and a reversal of the inverse rotation-separation relationship at the range of 1400–1800km.This study is the first attempt to describe the mid-latitude binary systems using potential vorticity concepts (PV thinking), which implies that a binary interaction takes place between the 3-D flow patterns induced by upper-PV or surface-thermal anomalies rather than by the surface cyclones alone. It is argued that the upper-anomalies dominate the rotation process, and hence the rotational speeds of the interacting surface cyclones are more closely correlated with the relative intensities of their corresponding upper-level anomalies rather than with their own intensities, as reflected in weather charts. Data analysis indicates that mid-latitude binary cyclones are normally associated with at least one upper-PV anomaly. This explains the absence of a correlation between the rotation speed and the intensity of the surface cyclones there.A unique type of a mid-latitude binary system is identified, in which one cyclone coincides with an upper major PV-anomaly and the other moves along the periphery of the former. Such a binary system is entitled here the Contact Binary System (CBS), in contrast with remote interacting systems implied by the point vortex theory.Analytical considerations yield an increase in the rotation rate with separation for CBSs of separation smaller than 1000–1500km, in contrast to the normal decrease with R 2. The contribution of CBSs is suggested here to explain the abnormal increase in rotation rate at 1400–1900km range.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号