首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2474篇
  免费   147篇
  国内免费   14篇
测绘学   97篇
大气科学   192篇
地球物理   630篇
地质学   952篇
海洋学   195篇
天文学   359篇
综合类   9篇
自然地理   201篇
  2023年   17篇
  2022年   11篇
  2021年   47篇
  2020年   55篇
  2019年   58篇
  2018年   85篇
  2017年   100篇
  2016年   112篇
  2015年   83篇
  2014年   87篇
  2013年   167篇
  2012年   110篇
  2011年   130篇
  2010年   156篇
  2009年   138篇
  2008年   139篇
  2007年   130篇
  2006年   120篇
  2005年   113篇
  2004年   114篇
  2003年   90篇
  2002年   84篇
  2001年   49篇
  2000年   35篇
  1999年   49篇
  1998年   30篇
  1997年   22篇
  1996年   25篇
  1995年   10篇
  1994年   24篇
  1993年   15篇
  1992年   11篇
  1991年   8篇
  1990年   11篇
  1989年   12篇
  1988年   7篇
  1987年   18篇
  1986年   10篇
  1985年   13篇
  1984年   10篇
  1983年   15篇
  1982年   9篇
  1981年   13篇
  1980年   20篇
  1979年   10篇
  1978年   8篇
  1977年   8篇
  1976年   8篇
  1974年   8篇
  1973年   5篇
排序方式: 共有2635条查询结果,搜索用时 15 毫秒
1.
Sediment archives from a mountain lake are used as indicators of seismotectonic activity in the Grenoble area (French western Alps, 45°N). Sedimentological analysis (texture and grain-size characteristics) exhibits several layers resulting from instantaneous deposits in Lake Laffrey: six debris flow events up to 8 cm thick can be attributed to slope failure along the western flank of the basin. Dating with 210Pb and 137Cs gamma counting techniques and the reconnaissance of historical events, provide a constrained age-depth model. Over the last 250 years, five of such debris flow deposits could be related to historical earthquakes of MSK intensities greater than VI over an area of <60 km. One debris flow deposit triggered at the beginning of the last century can be related to an historical landslide possibly triggered by the artificial regulation of the lake level.  相似文献   
2.
3.
Abstract— We studied unshocked and experimentally (at 12, 25, and 28 GPa, with 25, 100, 450, and 750°C pre‐shock temperatures) shock‐metamorphosed Hospital Hill quartzite from South Africa using cathodoluminescence (CL) images and spectroscopy and Raman spectroscopy to document systematic pressure or temperature‐related effects that could be used in shock barometry. In general, CL images of all samples show CL‐bright luminescent patchy areas and bands in otherwise nonluminescent quartz, as well as CL‐dark irregular fractures. Fluid inclusions appear dominant in CL images of the 25 GPa sample shocked at 750°C and of the 28 GPa sample shocked at 450°C. Only the optical image of our 28 GPa sample shocked at 25°C exhibits distinct planar deformation features (PDFs). Cathodoluminescence spectra of unshocked and experimentally shocked samples show broad bands in the near‐ultraviolet range and the visible light range at all shock stages, indicating the presence of defect centers on, e.g., SiO4 groups. No systematic change in the appearance of the CL images was obvious, but the CL spectra do show changes between the shock stages. The Raman spectra are characteristic for quartz in the unshocked and 12 GPa samples. In the 25 and 28 GPa samples, broad bands indicate the presence of glassy SiO2, while high‐pressure polymorphs are not detected. Apparently, some of the CL and Raman spectral properties can be used in shock barometry.  相似文献   
4.
This paper describes recent exceptional slope failures in high-mountain, glacial environments: the 2002 Kolka–Karmadon rock–ice avalanche in the Caucasus, a series of ice–rock avalanches on Iliamna Volcano, Alaska, the 2005 Mt. Steller rock–ice avalanche in Alaska, and ice and rock avalanches at Monte Rosa, Italy in 2005 and 2007. Deposit volumes range from 106 to 108 m3 and include rock, ice and snow. Here we focus on thermal aspects of these failures reflecting the involvement of glacier ice and permafrost at all sites, suggesting that thermal perturbations likely contributed to the slope failures. We use surface and troposphere air temperatures, near-surface rock temperatures, satellite thermal data, and recent 2D and 3D thermal modeling studies to document thermal conditions at the landslide sites. We distinguish between thermal perturbations of volcanic-geothermal and climatic origin, and thermal perturbations related to glacier–permafrost interaction. The data and analysis support the view that recent, current and future climatic change increases the likelihood of large slope failures in steep glacierized and permafrost terrain. However, some important aspects of these settings such as the geology and tectonic environment remain poorly understood, making the identification of future sites of large slope instabilities difficult. In view of the potentially large natural disasters that can be caused by such slope failures, improved data and understanding are needed.  相似文献   
5.
6.
7.
8.
Abstract Kaidun is a breccia of disparate enstatite and carbonaceous chondrite clasts that continues to provide real surprises. Many Kaidun clasts have been intensely altered by aqueous fluids, as evidenced by the widespread occurrence of ferromagnesian phyllosilicates and by the presence of carbonate- and phyllo-silicate-filled veins. In this report, we describe an unusual CM lithology containing many mineralogical features not previously reported from any meteorite, including pyrrhotite, with exclusive needlelike morphologies and thick mantles of phyllosilicate, and complex aggregates of phyllosilicate, melanite garnet, crosscut by pentlandite veins. The latter features appear to be due in large part to extensive hydrothermal alteration at temperatures on the order of 450 °C, which is significantly higher than that attained during secondary processing from other known CM material.  相似文献   
9.
Abstract— The Crow Creek Member is one of several marl units recognized within the Upper Cretaceous Pierre Shale Formation of eastern South Dakota and northeastern Nebraska, but it is the only unit that contains shock‐metamorphosed minerals. The shocked minerals represent impact ejecta from the 74‐Ma Manson impact structure (MIS). This study was aimed at determining the bulk chemical compositions and analysis of planar deformation features (PDFs) of shocked quartz; for the basal and marly units of the Crow Creek Member. We studied samples from the Gregory 84‐21 core, Iroquois core and Wakonda lime quarry. Contents of siderophile elements are generally high, but due to uncertainties in the determination of Ir and uncertainties in compositional sources for Cr, Co, and Ni, we could not confirm an extraterrestrial component in the Crow Creek Member. We recovered several shocked quartz grains from basal‐unit samples, mainly from the Gregory 84‐21 core, and results of PDF measurements indicate shock pressures of at least 15 GPa. All the samples are composed chiefly of SiO2 (29–58 wt%), Al2O3 (6–14 wt%), and CaO (7–30 wt%). When compared to the composition of North American Shale Composite, the samples are significantly enriched in CaO, P2O5, Mn, Sr, Y, U, Cr, and Ni. The contents of rare earth elements (REE), high field strength elements (HFSE), Cr, Co, Sc, and their ratios and chemical weathering trends, reflect both felsic and basic sources for the Crow Creek Member, an inference, which is consistent with the lithological compositions in the environs of the MIS. The high chemical indices of alteration and weathering (CIA' and CIW': 75–99), coupled with the Al2O3‐(CaO*+Na2O)‐K2O (A‐CN'‐K) ratios, indicate that the Crow Creek Member and source rocks had undergone high degrees of chemical weathering. The expected ejecta thicknesses at the sampled locations (409 to 219 km from Manson) were calculated to range from about 1.9 to 12.2 cm (for the present‐day crater radius of Manson), or 0.4 to 2.4 cm (for the estimated transient cavity radius). The trend agrees with the observed thicknesses of the basal unit of the Crow Creek Member, but the actually observed thicknesses are larger than the calculated ones, indicating that not all of the basal unit comprises impact ejecta.  相似文献   
10.
Abstract— Libyan Desert Glass (LDG) is an enigmatic type of glass that occurs in western Egypt in the Libyan Desert. Fairly convincing evidence exists to show that it formed by impact, although the source crater is currently unknown. Some rare samples present dark‐colored streaks with variable amounts of Fe, and they are supposed to contain a meteoritic component. We have studied the iron local environment in an LDG sample by means of Fe K‐edge highresolution X‐ray absorption near edge structure (XANES) spectroscopy to obtain quantitative data on the Fe oxidation state and coordination number in both the Fe‐poor matrix and Fe‐rich layers. The pre‐edge peak of the high‐resolution XANES spectra of the sample studied displays small but reproducible variations between Fe‐poor matrix and Fe‐rich layers, which is indicative of significant changes in the Fe oxidation state and coordination number. Comparison with previously obtained data for a very low‐Fe sample shows that, while iron is virtually all trivalent and in tetrahedral coordination ([4]Fe3+) in the low‐Fe sample, the sample containing the Fe‐rich layers display a mixture of tetra‐coordinated trivalent iron ([4]Fe3+) and penta‐coordinated divalent iron ([5]Fe2+), with the Fe in the Fe‐rich layer being more reduced than the matrix. From these data, we conclude the following: a) the significant differences in the Fe oxidation state between LDG and tektites, together with the wide intra‐sample variations in the Fe‐oxidation state, confirm that LDG is an impact glass and not a tektite‐like glass; b) the higher Fe content, coupled with the more reduced state of the Fe, in the Fe‐rich layers suggests that some or most of the Fe in these layers may be directly derived from the meteoritic projectile and that it is not of terrestrial origin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号