首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8235篇
  免费   842篇
  国内免费   522篇
测绘学   413篇
大气科学   885篇
地球物理   2764篇
地质学   3454篇
海洋学   667篇
天文学   678篇
综合类   284篇
自然地理   454篇
  2024年   20篇
  2023年   59篇
  2022年   134篇
  2021年   189篇
  2020年   149篇
  2019年   157篇
  2018年   603篇
  2017年   550篇
  2016年   443篇
  2015年   297篇
  2014年   287篇
  2013年   298篇
  2012年   835篇
  2011年   658篇
  2010年   263篇
  2009年   341篇
  2008年   272篇
  2007年   231篇
  2006年   246篇
  2005年   941篇
  2004年   963篇
  2003年   726篇
  2002年   251篇
  2001年   121篇
  2000年   90篇
  1999年   73篇
  1998年   35篇
  1997年   45篇
  1996年   32篇
  1995年   24篇
  1994年   24篇
  1993年   12篇
  1992年   15篇
  1991年   33篇
  1990年   21篇
  1989年   10篇
  1988年   7篇
  1987年   11篇
  1986年   10篇
  1985年   6篇
  1984年   11篇
  1983年   8篇
  1981年   10篇
  1980年   8篇
  1979年   5篇
  1976年   6篇
  1975年   5篇
  1973年   5篇
  1971年   7篇
  1970年   6篇
排序方式: 共有9599条查询结果,搜索用时 15 毫秒
1.
2.
The inception and growth of the active Carpino-Le Piane Basin Fault System (CLPBFS; central-southern Apennines, Italy) was analysed with respect to the neighbouring Isernia and Surrounding (ISFS) and Boiano Basin (BBFS) extensional Fault Systems. 39Ar–40Ar dating showed that the BBFS was already active 649 ± 21 ka bp and that the ISFS was active at least 476 ±10 ka bp , whereas the activity of the CLPBFS started certainly later than 253 ± 22 ka bp , and very probably as recently as <28 ka bp . These ages, combined with structural data (geometry and kinematics of the fault systems), indicate that the inception and development of the CLPBFS could be strictly related to the stress changes caused by earthquakes occurring on the BBFS.  相似文献   
3.
4.
The differentiation of units in the Sierra de Almagro has been a source of controversy. There were defined the Almagride and Ballabona–Cucharón complexes, the former considered by several authors as part of a Subbetic metamorphosed and outcropping in a tectonic window. In this study, the units of Ballabona, Almagro and Cucharón are integrated into a single one, that of Tres Pacos, because they correspond to different parts of the same stratigraphic series. This unit is tectonically over the Nevado–Filabride Complex. The existence of the Almagride and Ballabona–Cucharón complexes is discarded and their units form part of the Alpujarride Complex. To cite this article: C. Sanz de Galdeano, F.J. Garc??a Tortosa, C. R. Geoscience 334 (2002) 355–362.  相似文献   
5.
The Borborema Province (BP) of northeastern Brazil is a complex crustal assemblage, which has undergone a polycyclic evolution during the Proterozoic. In the Piancó-Alto Br??gida belt, a metamorphosed leucosome vein inserted in amphibolites has a trace element pattern suggesting a T-MORB protolith. Apatites yield a REE pattern indicating growth in equilibrium with garnet, thus pointing to its metamorphic origin. UPb analyses yield an age of 540±5 Ma interpreted as a cooling age following amphibolite facies regional metamorphism associated with granitic emplacement at ca. 580 Ma. The resulting slow cooling rates (ranging from ca. 2.5 to 5 °C Ma?1) are consistent with underplating of mafic magmas, or crustal thickening caused by nappe stacking, as possible processes governing the metamorphic evolution of the BP. To cite this article: B. Dhuime et al., C. R. Geoscience 335 (2003).  相似文献   
6.
7.
Data recorded by the Italian Telemetered Seismic Network (ITSN) of the Istituto Nazionale di Geofisica (ING) have been widely used in recent years to image slab structures and to find evidence for active processes along the Italian Peninsula. However, the use of seismic data for geostructural purposes may be affected by the well-known trade-off between earthquake location and seismic-velocity parameters. Furthermore, the confidence ellipse predicted by standard procedures may be inadequate for the representation of the probable error of a computed localization. This paper evaluates the probable errors on the hypocentre determinations of the seismic events recorded by the ITSN, using a Monte Carlo method.
We compute synthetic arrival times using a 1-D velocity model appropriate as an average for the Italian area. The hypocentres used are all those recorded by the ITSN during the period January 1992 to March 1994 (1972 events). Station locations are those of the current ITSN configuration. The synthetic arrival times are perturbed with a Gaussian distribution of errors and input to ING's standard hypocentral location procedure, but using crustal velocities differing by 10 per cent from those used to generate them. Each simulation is repeated at least 30 times. Average absolute shifts of hypocentres are assessed in grid cells of linear dimension 33 km covering the whole Italian region.
For regions within the ITSN, shifts are typically 5–10 km in location and up to 20 km in depth. However, for offshore and coastal regions, they are much greater: 50 km or more in both location and depth (far exceeding the equivalent uncertainties quoted by ING bulletins). Possible consequences of this are highlighted by producing a cross-section of subcrustal hypocentres from the Adriatic to the Tyrrhenian Sea, where the large uncertainty in depth precludes any confident interpretation of dipping tectonic features.  相似文献   
8.
The geology of the mainland and offshore of Sicily is illustrated by a few geologic sections and seismic profiles across the late Cenozoic orogenic belt of central and western Sicily and across the Sardinia Channel and Sicily Straits. This belt is the result of several tectonic events. Deformation involved mainly the sedimentary cover of the old African continental margin characterized by a broad basinal domain, flanked along its external (southern) margin by a shallow-water carbonate platform attached to Africa in the Triassic. Compressional deformation started in the more internal basinal rock assemblages overlying a thinned crust. The most important structural characteristic of the early phase of thrusting is the duplex pile forming the bulk of the chain in Central Western Sicily. The structure consists of a basal allochthon, made up of Permian to Middle Triassic layers, an intermediate duplex wedge, composed of competent Mesozoic carbonates, and a roof complex, including Upper Mesozoic-Lower Tertiary less competent rocks. Large-scale clockwise rotation of the thrusts accompanied transpressional movements in the hinterland during the Pliocene. Right oblique reverse faults modified the previous tectonic contacts between the allochthons in the hinterland zones. Contemporaneous south-directed imbrications affected the southern external areas, progressively incorporating foreland and piggyback basins. Development of the Gela Thrust System appears to be linked to the transpressional event; its accretion is also related to contemporaneous underthrusting at deeper levels of Mesozoic carbonate substratum. The older buried thrust sheets were pushed up to the surface breaching the deformed Tertiary cover of the Gela TS. Northwards in the belt post-Messinian normal growth faults opened half graben whose sedimentary fill underwent structural inversion. Alternation of extension and compression tectonics characterizes the Sicilian continental margin in the last million years.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号