首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
大气科学   2篇
  2020年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Climate Dynamics - The zonal flow associated with cut-off lows (COLs) comprises two jet streaks of different spatial extents. The smaller scale jet streak, located north of the COLs, forms as a...  相似文献   
2.
Cloud Resolving Models (CRMs) which are used increasingly to make operational forecasts, employ Bulk Microphysics Schemes (BMSs) to describe cloud microphysical processes. In this study two BMSs are employed in a new Nonhydrostatic σ-coordinate Model to perform two hour simulations of convection initiated by a warm bubble, using a horizontal grid resolution of 500 m. Different configurations of the two BMSs are applied, to test the effects of the presence of graupel with one scheme (2-configurations) and of changing the cloud droplet sizes in the second scheme (4-configurations), on the simulation of idealised thunderstorms. Maximum updrafts in all the simulations are similar over the first 40 minutes, but start to differ beyond this point. The first scheme simulates the development of a second convective cell that is triggered by the cold pool that develops from the outflow of the first storm. The cold pool is more intense in the simulation with graupel because of melting of graupel particles, which results in relatively large raindrops, decreases the temperature through latent heat absorption, causing stronger downdrafts, which all contribute to the formation of a more intense cold pool. The second scheme simulates the development of a second cell in two of its configurations, while two other configurations do not simulate the redevelopment. Two configurations that simulate the secondary redevelopment produce a slightly stronger cold pool just before redevelopment. Our results show that small differences in the microphysics formulations result in simulations of storm dynamics that diverge, possibly due nonlinearities in the model.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号