首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
大气科学   2篇
地球物理   3篇
地质学   1篇
  2010年   2篇
  1999年   1篇
  1998年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
Epstein and Yapp's criticism of our paper is answered. It is shown that for all trees so far studied, the cellulose laid down in a warmer period contains C-H hydrogens depleted in deuterium with respect to cellulose laid down in a colder period. Since this is the opposite to that predicted by thermodynamics it is probably due to the temperature effects on one or more of the biochemical reactions leading to cellulose.  相似文献   
2.
δ13C values are presented for cellulose samples prepared from two dendrochronologically dated Pinus longaeva (bristlecone pine) trees which grew during the last 1000 years. δ13C variations for these lower forest border trees are similar to upper tree line ring-width variations for the same species and English high summer temperature variations for the same time period. However, the δ13C variations appear to be unrelated to lower forest border ring-width variations and cellulose δ D variations for the same specimens.  相似文献   
3.
We use a physically plausible four parameter linear response equation to relate 2,000 years of global temperatures and sea level. We estimate likelihood distributions of equation parameters using Monte Carlo inversion, which then allows visualization of past and future sea level scenarios. The model has good predictive power when calibrated on the pre-1990 period and validated against the high rates of sea level rise from the satellite altimetry. Future sea level is projected from intergovernmental panel on climate change (IPCC) temperature scenarios and past sea level from established multi-proxy reconstructions assuming that the established relationship between temperature and sea level holds from 200 to 2100 ad. Over the last 2,000 years minimum sea level (−19 to −26 cm) occurred around 1730 ad, maximum sea level (12–21 cm) around 1150 ad. Sea level 2090–2099 is projected to be 0.9 to 1.3 m for the A1B scenario, with low probability of the rise being within IPCC confidence limits.  相似文献   
4.
We reconstructed decadal to centennial variability of maximum sea ice extent in the Western Nordic Seas for A.D. 1200–1997 using a combination of a regional tree-ring chronology from the timberline area in Fennoscandia and δ18O from the Lomonosovfonna ice core in Svalbard. The reconstruction successfully explained 59% of the variance in sea ice extent based on the calibration period 1864–1997. The significance of the reconstruction statistics (reduction of error, coefficient of efficiency) is computed for the first time against a realistic noise background. The twentieth century sustained the lowest sea ice extent values since A.D. 1200: low sea ice extent also occurred before (mid-seventeenth and mid-eighteenth centuries, early fifteenth and late thirteenth centuries), but these periods were in no case as persistent as in the twentieth century. Largest sea ice extent values occurred from the seventeenth to the nineteenth centuries, during the Little Ice Age (LIA), with relatively smaller sea ice-covered area during the sixteenth century. Moderate sea ice extent occurred during thirteenth–fifteenth centuries. Reconstructed sea ice extent variability is dominated by decadal oscillations, frequently associated with decadal components of the North Atlantic Oscillation/Arctic Oscillation (NAO/AO), and multi-decadal lower frequency oscillations operating at ~50–120 year. Sea ice extent and NAO showed a non-stationary relationship during the observational period. The present low sea ice extent is unique over the last 800 years, and results from a decline started in late-nineteenth century after the LIA.  相似文献   
5.
1INTRODUCTIONReservoirsedimentationisrecognizedasoneofthemainproblemsafectingtheeconomicsofmanywaterresourcesprojects.Manmad...  相似文献   
6.
In this paper we study the problem of determining the effective permeability on a coarse scale level of problems with strongly varying and discontinuous coefficients defined on a fine scale. The upscaled permeability is defined as the solution of an optimization problem, where the difference between the fine scale and the coarse scale velocity field is minimized. We show that it is not necessary to solve the fine scale pressure equation in order to minimize the associated cost‐functional. Furthermore, we derive a simple technique for computing the derivatives of the cost‐functional needed in the fix‐point iteration used to compute the optimal permeability on the coarse mesh. Finally, the method is illustrated by several analytical examples and numerical experiments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号