首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   4篇
测绘学   6篇
大气科学   15篇
地球物理   16篇
地质学   41篇
海洋学   1篇
天文学   39篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   2篇
  2014年   7篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   7篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2006年   9篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1992年   4篇
  1990年   2篇
  1986年   1篇
  1984年   1篇
  1980年   2篇
  1978年   5篇
  1970年   1篇
排序方式: 共有119条查询结果,搜索用时 203 毫秒
1.
Photopolarimetric observations of comet Austin with the IAU/IHW filter system were obtained on the 2.34 m Vainu Bappu Telescope (VBT) of the Indian Institute of Astrophysics, at Kavalur, India, during pre-perihelion phase on February 20,1990 and on the 1.2 m telescope of the Physical Research Laboratory at Gurusikhar, Mount Abu during postperihelion phase on May 2 and 4, 1990. The comet appeared bluer than a solar analog during post-perihelion phase on May 2 and 4. The percent polarization shows a sharp increase towards the red on May 2 and 4. The dominant sizes of the dust particles appear to lie in a narrow range of 0.1 to 0.5 Μm. Regarding the molecular band emission, CN and C2 bands are quite strong; C3 emission was also found to be strong though the observations on May 2 and 4 show significant variation as compared to C2 emission. Molecular band polarization for CN, C3, C2 and H2 O+ have been calculated. It has been found that emission polarization in CN, C2 and C3 is between 1–7% (phase angle between 107.4–109 degrees). For CN and C2 the polarization values are close to the theoretically predicted values, but for C3 the polarization value falls much below the theoretically predicted value. A similar result was found for comet Halley.  相似文献   
2.
3.
This article describes the observations of a type III radio burst observed at 103 MHz simultaneously by the two radio telescopes situated at Rajkot (22.3°N, 70.7°E) and Thaltej (23°N, 72.4°E). This event occurred on September 30, 1993 at about 0430 UT and lasted for only half a minute. The event consisted of several sharp spikes in a group. The rise and fall time of these are comparable, however the peaks of individual spikes varied by a factor of four. The comparison of these observations with the data of solar radio spectrograph HiRAS indicates that this was a metric radio burst giving highest emission at about 103 MHz.  相似文献   
4.
5.
A map of Rosette Nebula in continuum absorption is made at 34.5 MHz using the Decameter Wave Radio Telescoe at Gauribidanur, India, with a resolution of 26×40, is presented. These observations are combined with the 2700 MHz measurements of Grahamet al. (1982) to derive the electron temperature distribution across the nebula. It is found that the temperatures in the southeastern parts of the nebula are around 5000 K and increase up to 8000 K towards the northwestern regions. It is suggested that the lower electron temperatures in the southeastern regions are due to the presence of more dust there compared to other regions in the nebula.  相似文献   
6.
7.
Uncontrolled overland flow drives flooding, erosion, and contaminant transport, with the severity of these outcomes often amplified in urban areas. In pervious media such as urban soils, overland flow is initiated via either infiltration‐excess (where precipitation rate exceeds infiltration capacity) or saturation‐excess (when precipitation volume exceeds soil profile storage) mechanisms. These processes call for different management strategies, making it important for municipalities to discern between them. In this study, we derived a generalized one‐dimensional model that distinguishes between infiltration‐excess overland flow (IEOF) and saturation‐excess overland flow (SEOF) using Green–Ampt infiltration concepts. Next, we applied this model to estimate overland flow generation from pervious areas in 11 U.S. cities. We used rainfall forcing that represented low‐ and high‐intensity events and compared responses among measured urban versus predevelopment reference soil hydraulic properties. The derivation showed that the propensity for IEOF versus SEOF is related to the equivalence between two nondimensional ratios: (a) precipitation rate to depth‐weighted hydraulic conductivity and (b) depth of soil profile restrictive layer to soil capillary potential. Across all cities, reference soil profiles were associated with greater IEOF for the high‐intensity set of storms, and urbanized soil profiles tended towards production of SEOF during the lower intensity set of storms. Urban soils produced more cumulative overland flow as a fraction of cumulative precipitation than did reference soils, particularly under conditions associated with SEOF. These results will assist cities in identifying the type and extent of interventions needed to manage storm water produced from pervious areas.  相似文献   
8.
Frequent occurrence of fog in different parts of northern India is common during the winter months of December and January. Low visibility conditions due to fog disrupt normal public life. Visibility conditions heavily affect both surface and air transport. A number of flights are either diverted or cancelled every year during the winter season due to low visibility conditions, experienced at different airports of north India. Thus, fog and visibility forecasts over plains of north India become very important during winter months. This study aims to understand the ability of a NWP model (NCMRWF, Unified Model, NCUM) with a diagnostic visibility scheme to forecast visibility over plains of north India. The present study verifies visibility forecasts obtained from NCUM against the INSAT-3D fog images and visibility observations from the METAR reports of different stations in the plains of north India. The study shows that the visibility forecast obtained from NCUM can provide reasonably good indication of the spatial extent of fog in advance of one day. The fog intensity is also predicted fairly well. The study also verifies the simple diagnostic model for fog which is driven by NWP model forecast of surface relative humidity and wind speed. The performance of NWP model forecast of visibility is found comparable to that from simple fog model driven by NWP forecast of relative humidity and wind speed.  相似文献   
9.
Western disturbances (WDs) and Indian summer monsoon (ISM) led precipitation play a central role in the Himalayan water budget. Estimating their contributions to water resource is although a challenging but essential for hydrologic understanding and effective water resource management. In this study, we used stable water isotope data of precipitation and surface waters to estimate the contribution of ISM and WDs to the water resources in three mountainous river basins - Indus, Bhagirathi and Teesta river basins of western, central and Eastern Himalayas. The study reveals distinct seasonality in isotope characteristics of precipitation and surface waters in each river basin is due to changes in moisture source, hydrometeorology and relief. Despite steady spatial variance in the slope and intercept of regression lines from the Teesta to Indus and the Bhagirathi river basins, the slope and intercept are close to the global meteoric water line and reported local meteoric water line of other regions in the Himalayas and the Tibetan Plateau. The two-component end-member mixing method using d-excess as tracer were used to estimate the contribution from ISM and WD led precipitation to surface water in aforementioned river basins. The results suggest that the influence of the ISM on the water resources is high (>72% to annual river flow) in Teesta river basin (eastern Himalayas), while as the WDs led precipitation is dominantly contributing (>70% average annual river flow) to the surface waters in the Indus river basin (western Himalayas). The contribution of ISM and WD led precipitation in Bhagirathi river basin is 60% and 40%, respectively. The findings demonstrate that the unusual changes in the ISM and WD moisture dynamics have the potential to affect the economy and food security of the region, which is dependent on the availability of water resources. The obtained results are of assistance to policy makers/mangers to make use of the information for better understanding hydrologic response amid unusual behaviour of the dual monsoon system over the region.  相似文献   
10.
Summary The highest recorded 24-hour rainfall totals from 1875 to 1982 for about 300 stations were plotted and isohyets drawn to delineate the homogeneous zones of heavy rainfall. The isohyetal pattern indicated an unsteady increase from less than 20 cm in the far west and far north to over 50 cm on or near the coasts. At a few inland stations outstanding amounts have been recorded but these are randomly distributed in space and time. Besides these, there existed a densely gauged area in the Central Peninsula between latitudes 8 °N to 21 °N within which more than 20 cm of rain in 24 hours have never been recorded. The areas of heavy rainfall of one day duration include the entire Indian region except the far western extremity, the northern area bordered by the Himalayas and the central peninsula. The correlation coefficient between the highest rainfall and elevation indicated no significant relationship.With 2 Figures  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号