首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
测绘学   1篇
地质学   1篇
天文学   2篇
自然地理   1篇
  2014年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  1995年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
We investigate the global evolution of a turbulent protoplanetary disk incorporating the effects of Maxwell stress due to a large-scale magnetic field permeating the disk. A magnetic field is produced continuously by an dynamo and the resultant Maxwell stress assists the viscous stress in p roviding the means for disk evolution. The most striking feature of magnetized disk evolution is the presence of the surface density bulge located in the magnetic gap, the region of the disk where the degree of ionization is too low to allow for coupli ng between the magnetic field and the gas. The bulge persists for a time of the order of 105–106 yr. The presence and persistence of the surface density bulge may have important implications for the process of planet formation and the overall characteristics of resultant planetary systems.Operated by USRA under contract No. NASW-4574 with NASA.  相似文献   
2.
Digital topography models for Martian surfaces   总被引:2,自引:0,他引:2  
We propose to use an unsupervised automated classification of topographic features on Mars in order to speed up geomorphic and geologic mapping of the planet. We construct a digital topography model (DTM), a multilayer grid that stores various kinds of topographical information for every pixel in a site. The method uses a probabilistic clustering algorithm to assign topographically meaningful labels to all pixels in the DTM. The results are displayed as a thematic map of topography. Resultant topographical features are characterized and compared using statistics of their constituent pixels. We demonstrate the usage of our method by classifying and characterizing the topography of a landscape in the Tisia Valles region on Mars. We discuss extensions and further applications of our method.  相似文献   
3.
This paper describes the implementation of a morphology based algorithm for extracting stream networks from data as a Web Service within the framework of GeoBrain, an open, interoperable, distributed, standard-compliant, multi-tier web-based geospatial information services and knowledge building system. Unlike standard out-of-the-box GIS software, which uses the flow direction based algorithm and often produces streams that are spatially uniform, streams extracted with this Web Service correctly reflect spatial variability in dissection patterns. In addition, this Web Service is free and can be accessed from anywhere provided that there is an Internet connection and a standard Web browser.  相似文献   
4.
This paper demonstrates the plausibility of inferring the spatial variability of geology from topographically derived landscape dissection patterns. This enables surveying large regions for spatial variability in geology, for which direct remote sensing is not feasible, by studying variability in dissection pattern, a feature extracted straight off from digital elevation model data. Dissection pattern is obtained automatically by a novel algorithm, especially designed to delineate the valleys with high accuracy in order to reflect spatial variability in dissection density. The dissection pattern is encapsulated by a continuous map of drainage density, a raster variable best suited for showing spatial variability of dissection. Such a map, constructed for the study area in the Cascade Range, Oregon, USA, shows a sharp discontinuity in the dissection pattern, indicating change in underlying geology. Possible factors controlling the dissection pattern such as climate, local and regional slopes, vegetation, and geology are examined, and geology has been found to be the dominant controlling factor. The dissection contrast coincides with the boundary between the Western and High Cascades, two geologic provinces with different rock ages and types. The older and less permeable Western Cascades are associated with denser dissection pattern, whereas the younger and more permeable High Cascades correspond to less dissected pattern. This new mapping method can be applied to locations where topography is the only readily available data, and the generated map could be used to extract previously unknown geologic or environmental information.  相似文献   
5.
This study presents an automated system for cataloging impact craters using the MOLA 128 pixels/degree digital elevation model of Mars. Craters are detected by a two-step algorithm that first identifies round and symmetric topographic depressions as crater candidates and then selects craters using a machine-learning technique. The system is robust with respect to surface types; craters are identified with similar accuracy from all different types of martian surfaces without adjusting input parameters. By using a large training set in its final selection step, the system produces virtually no false detections. Finally, the system provides a seamless integration of crater detection with its characterization. Of particular interest is the ability of our algorithm to calculate crater depths. The system is described and its application is demonstrated on eight large sites representing all major types of martian surfaces. An evaluation of its performance and prospects for its utilization for global surveys are given by means of detailed comparison of obtained results to the manually-derived Catalog of Large Martian Impact Craters. We use the results from the test sites to construct local depth-diameter relationships based on a large number of craters. In general, obtained relationships are in agreement with what was inferred on the basis of manual measurements. However, we have found that, in Terra Cimmeria, the depth/diameter ratio has an abrupt decrease at ∼38°S regardless of crater size. If shallowing of craters is attributed to presence of sub-surface ice, a sudden change in its spatial distribution is suggested by our findings.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号