首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44480篇
  免费   685篇
  国内免费   304篇
测绘学   1077篇
大气科学   2950篇
地球物理   8942篇
地质学   15460篇
海洋学   3826篇
天文学   10901篇
综合类   102篇
自然地理   2211篇
  2021年   424篇
  2020年   465篇
  2019年   470篇
  2018年   1076篇
  2017年   981篇
  2016年   1214篇
  2015年   683篇
  2014年   1175篇
  2013年   2229篇
  2012年   1328篇
  2011年   1782篇
  2010年   1573篇
  2009年   2210篇
  2008年   1821篇
  2007年   1836篇
  2006年   1710篇
  2005年   1275篇
  2004年   1279篇
  2003年   1188篇
  2002年   1145篇
  2001年   1025篇
  2000年   964篇
  1999年   835篇
  1998年   860篇
  1997年   817篇
  1996年   694篇
  1995年   706篇
  1994年   632篇
  1993年   541篇
  1992年   507篇
  1991年   512篇
  1990年   594篇
  1989年   503篇
  1988年   464篇
  1987年   587篇
  1986年   487篇
  1985年   613篇
  1984年   691篇
  1983年   658篇
  1982年   574篇
  1981年   608篇
  1980年   501篇
  1979年   474篇
  1978年   476篇
  1977年   434篇
  1976年   423篇
  1975年   417篇
  1974年   398篇
  1973年   426篇
  1971年   260篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
2.
To date, passive flux meters have predominantly been applied in temperate environments for tracking the movement of contaminants in groundwater. This study applies these instruments to reduce uncertainty in (typically instantaneous) flux measurements made in a low-gradient, wetland dominated, discontinuous permafrost environment. This method supports improved estimation of unsaturated and over-winter subsurface flows which are very difficult to quantify using hydraulic gradient-based approaches. Improved subsurface flow estimates can play a key role in understanding the water budget of this landscape.  相似文献   
3.
4.
5.
6.
7.
It has been shown that at certain frequencies the acoustic backscatter from elastic targets exhibits certain resonance behavior which closely relates to the physical properties of the target such as dimension, thickness, and composition. The purpose of this paper is to develop an automated approach for identifying the presence of resonance in the acoustic backscatter from an unknown underwater target by isolating the resonance part from the specular contribution. An adaptive transversal filter structure is used to estimate the specular part of the backscatter and consequently the error signal would provide an estimate of the resonance part. An important aspect of this scheme lies in the fact that it does not require an underlying model for the elastic return. The adaptation rule is based upon fast recursive least squares (RLS) learning. The approach taken in this paper is general in the sense that it can be applied to targets of unknown geometry and thickness and, further, does not require any a priori information about the target and/or the environment. Test results on acoustic data are presented which indicate the effectiveness of the proposed approach  相似文献   
8.
9.
Summary. Four box cores collected from the Ontong—Java plateau during the Eurydice expedition have been used to make relative geomagnetic palaeo-intensity measurements. Rock magnetic measurements on the sediments show that they are characterized by a uniform magnetic mineralogy, and that they are suitable for relative intensity estimates. These are obtained by normalizing the NRM by an ARM imparted in a low DC bias field. the palaeoceanographic event known as the preservation spike is used to establish a crude time-scale for the record so that it may be compared with other data from the same region, and also with global palaeointensity estimates. the marine sediment data are quite similar to Australian intensity data from lake sediments and archaeomagnetic sources, but as might be expected exhibit some obvious differences from the global record.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号