首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  国内免费   1篇
测绘学   6篇
大气科学   1篇
地球物理   6篇
地质学   13篇
海洋学   4篇
天文学   5篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  1997年   1篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
The main idea of this paper is to identify functional relations between seakeeping characteristics and hull form parameters of Mediterranean fishing vessels. Multiple regression analysis is used for quantitative assessment through a computer software that is based on the SQL Server Database. The seakeeping attributes under investigation are the transfer functions of heave and pitch motions and of absolute vertical acceleration at stern, while the ship parameters influencing motion dynamics have been classified into two groups: displacement (Δ) and main dimensions (LBT), coefficients that define the details of the hull form (CWP, CVP, LCB, LCF, etc.).Four multiple regression models having different parameter combinations are here investigated and discussed, giving way to the so-called ‘Simple Model’, ‘Intermediate Model’, ‘Enhanced 1 Model’ and ‘Enhanced 2 Model’. The obtained results are more than satisfactory for seakeeping predictions during the conceptual design stage.  相似文献   
2.
Metin Taylan   《Ocean Engineering》2007,34(7):1021-1027
This work deals with parametric resonance which poses a great danger especially for container ships sailing in following or head seas. Important parameters that are effective in roll resonance are pointed out. For this purpose, a containership is taken as an example to analyze its stability in longitudinal waves based on the method worked out by American Bureau of Shipping (ABS). Unfavorable sailing conditions such as heading and speed, which directly depend on the environmental conditions, have been determined for this particular ship. These conditions may be reported to the master to guide him to keep his ship out of parametric resonance zones. Numerical details of the procedure have been worked out and provided as well.  相似文献   
3.
Topographic irregularities cause some distortions of magnetotelluric (MT) fields. In the vicinity of a topographic feature, the TM-mode distortion increases with the height and inclination of the slope. It is well-known that TM-mode ( E ) topographic effects are much greater than TE-mode ( E ı) distortions.   We have made a study of MT anomalies in TM-mode due to two-dimensional topography. In order to reduce these effects, the distortion tensor stripping technique was used. After corrections, the resulting data can be interpreted as if they were obtained over a flat surface and depend only on the subsurface structure. However, this technique sometimes causes some geometrical distortions of the real subsurface structure.   One of our aims is to overcome this failure. We have modified the correction coefficients by considering the actual one-dimensional geology. Model studies showed that our approach is especially useful in removing the terrain effects on complex 2D subsurface structures.   The other purpose of this study is to emphasize the importance of a proper terrain correction for data from sites having mountainous topography over complex geology, e.g. strike-slip faults, suture zones and rift valleys. Some examples of MT data sets collected from the North Anatolian Fault Zone and from the thrust regions of the Western Taurides will be presented.  相似文献   
4.
Afyonkarahisar is a very important geothermal province of western Anatolia and has low and medium enthalpy geothermal areas. This study has been carried out for the preparation of distribution maps of soil gases (radon and carbon dioxide) and shallow soil temperature and the exploration of permeable tectonic regions associated with geothermal systems and reveal the origins of radon and carbon dioxide gases. The western district of the study area is characterized by the high radon concentration (168.30 kBq/m3), carbon dioxide ratio (0.30%), and soil temperature (21.0 °C) values. Fethibey and Demirçevre faults, which allow the circulation of geothermal fluids, have been detected in the distribution maps of radon, carbon dioxide, and shallow depth temperature and the directions of the curves in these maps correspond to the strikes of Demirçevre faults. The effect of the fault plays an important role in the change of carbon dioxide concentration along the W-E directional geological section prepared to determine the change of soil gas and shallow depth temperature values depending on lithological differences, fault existence, and geothermal reservoir depth. On the other hand, it was determined that Rn222 concentration and soil temperature changed as a function of geothermal reservoir depth or lithological difference. Tuffs in Köprülü volcano-sedimentary units are the main source of radon due to their higher uranium contents. Besides, the carbon dioxide in Ömer–Gecek soils has geothermal origin because of the highest carbon dioxide content (99.3%) in non-condense gas. The similarities in patterns of soil temperature, radon, and carbon dioxide indicate that the variation in soil temperatures is related to radon and carbon dioxide emissions. It is concluded that soil gas and temperature measurements can be used to determine the active faults in the initial stage of geothermal exploration successfully.  相似文献   
5.
In this study, the effect of different sampling rates (i.e. observation recording interval) on the Precise Point Positioning (PPP) solutions in terms of accurac...  相似文献   
6.
7.
8.
Natural Hazards - The Northern Branch of the North Anatolian Fault System controls and deforms the Izmit Basin and the Sapanca Lake Basin in the study area. Unlike the Sapanca Lake Basin, the...  相似文献   
9.
In the present paper n 0 , for occulation and transit eclipses of partial phases, are evaluated numerically by means of the Runge-Kutta methods. Section 2 contains the required differential equations of n 0 with respect to the modulusX orC, and Section 3 includes the numerical method of the solutions of these differential equations. Theoretical values of 0 0 and 1 0 , with corresponding values ofC, are also added in this section.  相似文献   
10.
Simultaneous estimation of effects of source, propagation path, and local site amplification was carried out using observed strong motion records in a frequency range from 0.8 to 20 Hz for the purpose of empirical evaluation of the local site effects in different geological conditions in the northwestern part of Turkey. The analyzed data are S-wave portions of 162 accelerograms from 39 shallow events observed at 14 sites of BYTNet array. A spectral separation method was applied to the observed S-wave spectra. The solutions for source spectra, inelasticity factor of propagation path for S-waves (Q s-value), and factor of site amplification at each site were obtained in a least squares sense. In the analysis, we assumed that the factor of the site amplification at a reference site is the same as that of theoretical amplification of S-waves to the soil model whose bottom layer has an S-wave velocity around 2.15 km/s. The estimated Q s-value of the propagation path is modeled as Q s(f)?=?87.4f0.78. The estimated site amplifications are characterized into three groups. The sites in the first group belong to rock site with no dominant peaks at a frequency range of 2 to 10 Hz. The second group of hard soil sites is characterized with moderately dominant peaks at a frequency of 5 Hz. The last group for soft soil sites has common peaks at a frequency of 4 Hz with larger amplitudes than those in the hard soil group. We, then, compare the amplifications with average S-wave velocity in top 30 m of the shallow S-wave profiles and proposed linear empirical formula between them at each frequency. We, furthermore, inverted the observed amplification factors into S-wave velocity and Q s-value profiles of the deep soil over the basement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号