首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
测绘学   6篇
大气科学   1篇
地球物理   2篇
地质学   12篇
天文学   7篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
Vishal  V.  Siddique  T.  Purohit  Rohan  Phophliya  Mohit K.  Pradhan  S. P. 《Natural Hazards》2017,85(1):487-503

A massive disaster occurred in June 2013 in Kedarnath, India, due to cloudburst and extremely heavy rain along the Chorabari glacier. The resulting flash floods further aggravated the instability of natural and hill cut slopes at different places on the downstream side. The village Rambara that existed in close proximity of Kedarnath was swept away under flow of debris and water. The immediate surrounding area, which housed over a hundred and fifty shops and hotels, was completely washed away leaving no trace of civilization. This calamity in Uttarakhand is considered as India’s worst natural disasters after the tsunami in December 2004. On the downstream of the affected areas lie other pilgrim destinations that witness innumerable footfalls every year. Investigation of the health of the slopes on the routes to these destinations is therefore very important to ensure minimal damage to humans and machinery. The Himalayan terrain is a tectonically active mountain belt, having a large number of unstable natural and road cut slopes. Such slopes with rugged topography lie in the high seismic vulnerability zone. Further, the instability is aggravated by natural and anthropogenic activities increasing at a rapid and uncontrollable rate. In the light of the Kedarnath tragedy, more advanced research is being conducted along the National Highways to monitor and prevent slope/structure failures. This study was conducted to evaluate the hazard potential along National Highway-58, near Saknidhar village of Devprayag district by analysing rockfall using hazard rating systems and numerical simulation. Rockfall hazard rating systems were applied to evaluate the conditions of the slopes and to identify the associated risks. Based on the field and laboratory analyses, the parameters required for numerical models were determined. The bounce height, roll-out distance, kinetic energy and speed of the detached blocks were determined by using a competent rockfall simulator. The results obtained were used to identify rockfall risk in the region. Optimization strategies were applied during investigation by modifying the slope angle, ditch width and ditch angle to assess the possibility of a hazard to occur in different scenarios. The simulation studies revealed that an increasing slope angle could significantly increase the kinetic energy of the rock blocks. However, an increase in the ditch angle and the ditch width reduces the energy of moving blocks. The maximum bounce height above the slope varied from 0.003 m to 0.8 m for 10-kg blocks, whereas the maximum velocity and the maximum kinetic energy under such circumstances were 7.882 m/s and 379.89 J, respectively. The barrier capacity was found to be 233.18 J for 10-kg falling blocks at a height of 10.02 m. From the optimization studies, it was found that the risk can be reduced by up to 13 % if the slope of 70° has a ditch angle of 15° while on a flat ditch, the maximum risk will be at an angle of 65°. If the ditch angle is increased, the vertical component of the falling blocks is more effective than that in case of a flat ditch. These optimization studies lay foundation for advanced research for mitigation of rockfall hazards in similar potential areas.

  相似文献   
2.
Abstract

A methodology has been developed to normalize the multi‐temporal NDVIs derived from NOAA AVHRR data for the atmospheric effects to the least affected NDVI for development of spectral and spectrometeorological (or spectromet, for short) crop yield models. This is found to reduce the noise in NDVI due to varying atmospheric conditions from season to season and improve the predictability of statistical multiple linear regression yield models. The spectromet yield models for mustard crop in the nine districts of Rajasthan state haven been developed based on normalized NDVIs and have been validated by comparing the predicted yields with the estimated from crop cutting experiments by the state Development of Agriculture.  相似文献   
3.
4.
This paper describes a novel approach for creating an efficient, general, and differentiable parameterization of large-scale non-Gaussian, non-stationary random fields (represented by multipoint geostatistics) that is capable of reproducing complex geological structures such as channels. Such parameterizations are appropriate for use with gradient-based algorithms applied to, for example, history-matching or uncertainty propagation. It is known that the standard Karhunen–Loeve (K–L) expansion, also called linear principal component analysis or PCA, can be used as a differentiable parameterization of input random fields defining the geological model. The standard K–L model is, however, limited in two respects. It requires an eigen-decomposition of the covariance matrix of the random field, which is prohibitively expensive for large models. In addition, it preserves only the two-point statistics of a random field, which is insufficient for reproducing complex structures. In this work, kernel PCA is applied to address the limitations associated with the standard K–L expansion. Although widely used in machine learning applications, it does not appear to have found any application for geological model parameterization. With kernel PCA, an eigen-decomposition of a small matrix called the kernel matrix is performed instead of the full covariance matrix. The method is much more efficient than the standard K–L procedure. Through use of higher order polynomial kernels, which implicitly define a high-dimensionality feature space, kernel PCA further enables the preservation of high-order statistics of the random field, instead of just two-point statistics as in the K–L method. The kernel PCA eigen-decomposition proceeds using a set of realizations created by geostatistical simulation (honoring two-point or multipoint statistics) rather than the analytical covariance function. We demonstrate that kernel PCA is capable of generating differentiable parameterizations that reproduce the essential features of complex geological structures represented by multipoint geostatistics. The kernel PCA representation is then applied to history match a water flooding problem. This example demonstrates that kernel PCA can be used with gradient-based history matching to provide models that match production history while maintaining multipoint geostatistics consistent with the underlying training image.  相似文献   
5.
Re-examination of the outcrop of conjugate of strike-slip faults mapped by Roday et al. (1989) near forest rest house at Hirapur reveals that the main dextral strike-slip fault that strikes N35°E and is a manifestation of the earliest NE-SW trending subhorizontal σ1 that produced extensional reef system in the Bundelkhand massif. Although the change in the stress system though 90° rotation of the principal compressive stress σ1 and σ3 (with σ2 maintaining near vertically) is correct, another point of interest is that the σ1 for the system of faults bisects the obtuse angle between the two sets and not an acute one as required by the brittle failure criterion. The sinistral strike-slip faults were probably formed by rejuvenation of the initial dextral strike-slip faults that were generated when the maximum principal compressive stress was oriented NS. The reversal of fault displacement is seen on all scales in the Bundelkhand massif. The dextral strike-slip fault related to the late stress system was preferentially produced along pre-existing tensile fractures that were generated under NE-SW directed subhorizontal σ1. Some of these fractures were converted into sinistral strike-slip faults under NS directed maximum principal compression acting subhorizontally.  相似文献   
6.
We probe the spectral hardening of solar flares emission in view of associated solar proton events (SEPs) at earth and coronal mass ejection (CME) acceleration as a consequence. In this investigation we undertake 60 SEPs of the Solar Cycle 23 along with associated Solar Flares and CMEs. We employ the X-ray emission in Solar flares observed by Reuven Ramaty Higly Energy Solar Spectroscopic Imager (RHESSI) in order to estimate flare plasma parameters. Further, we employ the observations from Geo-stationary Operational Environmental Satellites (GOES) and Large Angle and Spectrometric Coronagraph (LASCO), for SEPs and CMEs parameter estimation respectively. We report a good association of soft-hard-harder (SHH) spectral behavior of Flares with occurrence of Solar Proton Events for 16 Events (observed by RHESSI associated with protons). In addition, we have found a good correlation (R=0.71) in SEPs spectral hardening and CME velocity. We conclude that the Protons as well as CMEs gets accelerated at the Flare site and travel all the way in interplanetary space and then by re-acceleration in interplanetary space CMEs produce Geomagnetic Storms in geospace. This seems to be a statistically significant mechanism of the SEPs and initial CME acceleration in addition to the standard scenario of SEP acceleration at the shock front of CMEs.  相似文献   
7.
In this article, the spatial variation of ground motion in Imphal City has been estimated by the finite-fault seismological model coupled with site response analysis. The important seismic sources around Imphal City have been identified from the fault map and past seismicity data. The rock level acceleration time histories at Imphal City for the 1869 Cachar (Mw 7.5) earthquake and a hypothetical Mw 8.1 event in the Indo-Burma subduction zone have been estimated by a stochastic finite-fault model. Soil investigation data of 122 boreholes have been collected from several construction projects in Imphal City. Site response analysis has been carried out and the surface level ground motion has been determined for Imphal City for these two earthquake events. The results are presented in the form of peak ground acceleration (PGA) contour map. From the present study it has been ascertained that the maximum amplification for PGA over Imphal City is as high as 2.5. The obtained contour maps can serve as guidelines for identifying vulnerable areas and disaster mitigation in Imphal City.  相似文献   
8.
Seismic site coefficients (F s ) for Imphal city have been estimated based on 700 synthetically generated earthquake time histories through stochastic finite fault method, considering various combinations of magnitudes and fault distances that may affect Imphal city. Seismic hazard curves and Uniform Hazard Response Spectra (UHRS) are presented for Imphal city. F s have been estimated based on site response analyses through SHAKE-91 for a period range of engineering interest (PGA to 3.0 s), for 5% damping. F s were multiplied by UHRS values to obtain surface level spectral acceleration with 2 and 10% probability of exceedance in 50 year (~2500 and ~500 year) return period. Comparison between predicted mean surface level response spectra and IS-1893 code shows that spectral acceleration value is higher for longer periods (i.e., >1.0 s), for ~500 year return period, and lower for periods shorter than 0.2 s for ~2500 year return period.  相似文献   
9.
Fry method enables rapid estimate of finite strain from deformed aggregates such as clastic grains, fossil colonies, oolitic or pisolitic aggregates, prophyroblastic minerals or phenocrysts. It has an advantage over the other methods of finite strain analysis in its very quality of enabling rapid estimation with a reasonable degree of accuracy. Details of the software to prepare a plot using Fry method are outlined. This program has an advantage over other computer based programs on the world wide web in its aesthetic getup, small size, user friendliness and a help file.  相似文献   
10.
The purpose of this work is to investigate the effect of magnetic activity on ionospheric time delay at low latitude Station Bhopal (geom. lat. 23.2°N, geom. long. 77.6°E) using dual frequency (1575.42 and 1227.60 MHz) GPS measurements. Data from GSV4004A GPS Ionospheric Scintillation and TEC monitor (GISTM) have been chosen to study these effects. This paper presents the results of ionospheric time delay during quiet and disturbed days for the year 2005. Results show that maximum delay is observed during quiet days in equinoxial month while the delays of disturbed period are observed during the months of winter. We also study the ionospheric time delay during magnetic storm conditions for the same period. Results do not show any clear relationship either with the magnitude of the geomagnetic storm or with the main phase onset (MPO) of the storm. But most of the maximum ionospheric time delay variations are observed before the main phase onset (MPO) or sudden storm commencement (SSC) as compared to storm days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号