首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
测绘学   34篇
天文学   2篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   1篇
  2013年   4篇
  2012年   5篇
  2011年   2篇
  2009年   3篇
  2008年   3篇
  2006年   2篇
  2005年   2篇
  1992年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
Spin rate estimation of sounding rockets using GPS wind-up   总被引:2,自引:1,他引:1  
Carrier phase wind-up is a well-known effect that arises from the relative rotation between a transmitting and receiving antenna. In GPS measurements at L1 frequency, this effect translates into an error of 19.029 cm per full relative rotation of antennas. Since this effect is independent of the satellite elevation for pure rotation about the antenna boresight axis, it is usually absorbed by the clock estimation in navigation algorithms. Therefore, the impact of wind-up is usually neglected for applications that do not require accuracies to the cm level like RTK. However, in receiving platforms with high rotation rate, the accumulated wind-up value can be important and actually be larger than receiver noise or even ionospheric variations. Therefore, in such scenarios, the wind-up contribution can be isolated and used as a source of information to compute the spin rate of such platforms using an appropriate combination of GPS observables. This work shows some results of a coarse, yet simple, approach to monitor the rotation angle and spin-rate of spin stabilized sounding rockets flown by DLR.  相似文献   
2.
Different types of GPS clock and orbit data provided by the International GPS Service (IGS) have been used to assess the accuracy of rapid orbit determination for satellites in low Earth orbit (LEO) using spaceborne GPS measurements. To avoid the need for reference measurements from ground-based reference receivers, the analysis is based on an undifferenced processing of GPS code and carrier-phase measurements. Special attention is therefore given to the quality of GPS clock data that directly affects the resulting orbit determination accuracy. Interpolation of clock data from the available 15 min grid points is identified as a limiting factor in the use of IGS ultra-rapid ephemerides. Despite this restriction, a 10-cm orbit determination accuracy can be obtained with these products data as demonstrated for the GRACE-B spacecraft during selected data arcs between 2002 and 2004. This performance may be compared with a 5-cm orbit determination accuracy achievable with IGS rapid and final products using 5 min clock samples. For improved accuracy, high-rate (30 s) clock solutions are recommended that are presently only available from individual IGS centers. Likewise, a reduced latency and more frequent updates of IGS ultra-rapid ephemerides are desirable to meet the requirements of upcoming satellite missions for near real-time and precise orbit determination.  相似文献   
3.
Most satellites in a low-Earth orbit (LEO) with demanding requirements on precise orbit determination (POD) are equipped with on-board receivers to collect the observations from Global Navigation Satellite systems (GNSS), such as the Global Positioning System (GPS). Limiting factors for LEO POD are nowadays mainly encountered with the modeling of the carrier phase observations, where a precise knowledge of the phase center location of the GNSS antennas is a prerequisite for high-precision orbit analyses. Since 5 November 2006 (GPS week 1400), absolute instead of relative values for the phase center location of GNSS receiver and transmitter antennas are adopted in the processing standards of the International GNSS Service (IGS). The absolute phase center modeling is based on robot calibrations for a number of terrestrial receiver antennas, whereas compatible antenna models were subsequently derived for the remaining terrestrial receiver antennas by conversion (from relative corrections), and for the GNSS transmitter antennas by estimation. However, consistent receiver antenna models for space missions such as GRACE and TerraSAR-X, which are equipped with non-geodetic receiver antennas, are only available since a short time from robot calibrations. We use GPS data of the aforementioned LEOs of the year 2007 together with the absolute antenna modeling to assess the presently achieved accuracy from state-of-the-art reduced-dynamic LEO POD strategies for absolute and relative navigation. Near-field multipath and cross-talk with active GPS occultation antennas turn out to be important and significant sources for systematic carrier phase measurement errors that are encountered in the actual spacecraft environments. We assess different methodologies for the in-flight determination of empirical phase pattern corrections for LEO receiver antennas and discuss their impact on POD. By means of independent K-band measurements, we show that zero-difference GRACE orbits can be significantly improved from about 10 to 6 mm K-band standard deviation when taking empirical phase corrections into account, and assess the impact of the corrections on precise baseline estimates and further applications such as gravity field recovery from kinematic LEO positions.  相似文献   
4.
In late December 2005 the GIOVE-A test satellite was launched by the European Space Agency (ESA) to secure the frequencies for the Galileo system and to provide a platform for testing the new navigation signals. We performed an initial assessment of these signals using the 30 m deep space antenna of the DLR ground station in Weilheim (Germany). The antenna gain raised the signals above the noise level, thus allowing a detailed analysis even without knowledge of the ranging codes. The present paper covers the analysis of the L1/E1 signals, which includes a discussion of the spectrum, the time domain signal and a decoding of the spreading codes for the Open Service.  相似文献   
5.
6.
Characterization of Compass M-1 signals   总被引:7,自引:4,他引:3  
An analysis of observations from China’s first medium earth orbit satellite Compass M-1 is presented, with main focus on the first orbit and clock solution for this satellite. The orbit is computed from laser ranging measurements. Based on this orbit solution, the apparent clock offset is estimated using measurements from two GNSS receivers, which allow Compass tracking. The analysis of the clock solutions reveals unexpectedly high dynamics in the pseudorange and carrier-phase observations. Furthermore, carrier-to-noise density ratio, pseudorange noise, and multipath are analyzed and compared to GPS and GIOVE. The results of the clock analysis motivate further research on the signals of the geostationary satellites of the Compass constellation.  相似文献   
7.
Precise orbit and baseline determination for maneuvering low earth orbiters   总被引:1,自引:0,他引:1  
GPS Solutions - Orbital maneuvers are usually performed as needed for low earth orbiters to maintain a predefined trajectory or formation-flying configuration. To avoid unexpected discontinuities...  相似文献   
8.
Numerical integration methods for orbital motion   总被引:1,自引:0,他引:1  
The present report compares Runge-Kutta, multistep and extrapolation methods for the numerical integration of ordinary differential equations and assesses their usefulness for orbit computations of solar system bodies or artificial satellites. The scope of earlier studies is extended by including various methods that have been developed only recently. Several performance tests reveal that modern single- and multistep methods can be similarly efficient over a wide range of eccentricities. Multistep methods are still preferable, however, for ephemeris predictions with a large number of dense output points.  相似文献   
9.
A study on the dependency of GNSS pseudorange biases on correlator spacing   总被引:2,自引:0,他引:2  
We provide a comprehensive overview of pseudorange biases and their dependency on receiver front-end bandwidth and correlator design. Differences in the chip shape distortions among GNSS satellites are the cause of individual pseudorange biases. The different biases must be corrected for in a number of applications, such as positioning with mixed signals or PPP with ambiguity resolution. Current state-of-the-art is to split the pseudorange bias into a receiver- and a satellite-dependent part. As soon as different receivers with different front-end bandwidths or correlator designs are involved, the satellite biases differ between the receivers and this separation is no longer practicable. A test with a special receiver firmware, which allows tracking a satellite with a range of different correlator spacings, has been conducted with live signals as well as a signal simulator. In addition, the variability of satellite biases is assessed through zero-baseline tests with different GNSS receivers using live satellite signals. The receivers are operated with different settings for multipath mitigation, and the changes in the satellite-dependent biases depending on the receivers’ configuration are observed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号