首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   7篇
  国内免费   1篇
测绘学   9篇
大气科学   12篇
地球物理   37篇
地质学   65篇
海洋学   36篇
天文学   22篇
自然地理   24篇
  2023年   2篇
  2021年   2篇
  2020年   4篇
  2018年   4篇
  2017年   8篇
  2015年   4篇
  2014年   6篇
  2013年   11篇
  2012年   2篇
  2011年   18篇
  2010年   5篇
  2009年   9篇
  2008年   14篇
  2007年   12篇
  2006年   7篇
  2005年   3篇
  2004年   10篇
  2003年   4篇
  2002年   10篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   6篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   5篇
  1985年   3篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1968年   2篇
  1966年   2篇
  1965年   1篇
  1951年   1篇
  1932年   1篇
排序方式: 共有205条查询结果,搜索用时 203 毫秒
1.
Elevated As concentrations in groundwater in the eastern United States have been recognized predominantly in the accretionary geologic terranes of northern New England. A retrospective examination of more than 18,000 existing groundwater samples from the Pennsylvania Department of Environmental Protection (PA DEP) Drinking Water and Sampling Information System database indicates that elevated groundwater As concentrations occur throughout the northern half of the Piedmont Province of Pennsylvania. Chemical analyses of 53 samples collected in 2005 from drinking water wells in this area all had detectable As, and 23% of these samples contained elevated (>133 nmol/L or >10 μg/L) concentrations of As. Elevated concentrations of As in the groundwater samples were most common in the Mesozoic sedimentary strata composed of sandstone and red mudstone with interbedded gray shale, and gray to black siltstone and shale. Arsenic was typically not elevated in groundwater of diabase intrusions of the Newark Basin or in crystalline and calcareous aquifers to the north of the Newark Basin. Geochemical parameters such as pH and oxidation–reduction potential can indicate mobility mechanisms of As in some regions. In this area, measured groundwater conditions were predominantly oxidizing (Eh > +50 mV), and more than 85% of samples contained arsenate as the dominant As species. Variations in pH were strongly correlated to the As concentration, with highest As concentrations observed at pH values greater than 6.4. The original source of As is most likely the black and gray shales that contain some arsenian pyrite with groundwater concentrations likely to be controlled by adsorption/desorption reactions with Fe oxides in the red mudstone aquifer materials.  相似文献   
2.
3.
4.
The conditional acid dissociation constants (pKa′) of two sulfonephthalein dyes, thymol blue (TB) and m-cresol purple (mCP), were assessed throughout the estuarine salinity range (0<S<40) using a tris/tris–HCl buffer and spectrophotometric measurement. The salinity dependence of the pKa′ of both dyes was fitted to the equations (25 °C, total proton pH scale, mol kg soln−1):
The estimated accuracy of pH measurements using these calculated pKa′ values is considered to be comparable to that possible with careful use of a glass electrode (±0.01 pH unit) but spectrophotometric measurements in an estuary have the significant advantage that it is not necessary to calibrate an electrode at different salinities. pH was measured in an estuary over a tidal cycle with a precision of ±0.0005 pH unit at high (S>30) salinity, and ±0.002 pH unit at low (S<5) salinity. The pH increased rapidly in the lower salinity ranges (0<S<15) but less rapidly at higher salinities.  相似文献   
5.
Accurate measurement of seawater pH has long been sought by marine chemists (for example: [Dickson, A.G. 1993a. The measurement of sea water pH. Marine Chemistry, 44, 131–142, Dickson, A.G. 1993b. pH buffers for sea water media based on the total hydrogen ion concentration scale. Deep-Sea Research, 40, 107–118; Zhang, 1996; Tapp, M., Hunter, K.A., Currie, K. and Macaskill, B. 2000. Apparatus of continuous-flow underway spectrophotometric measurement of surface water pH. Marine Chemistry 72(2–4), 193–202; Friis, K., Koetzinger, A., Wallace, D.W.R. 2004. Spectrophotometric pH measurement in the ocean: Requirements, design and testing of an autonomous charge-coupled device detector system. Limnology and Oceanography: Methods 2, 126–136]. Recently, such attempts have taken on greater significance as anthropogenic carbon dioxide emissions may create rapidly changing oceanic pH. Spectrophotometric techniques have been accepted generally as the best for determination of seawater pH. Here we report a new technique using thymol blue as the indicator dye and fitting the entire spectrum from 400 to 900 nm rather than measuring the absorbance values at only two or three points in the spectrum. This full-spectrum modelling enables a reduction in signal to noise over other techniques. In the laboratory, we find with seawater samples a pH precision increase of five-fold “within” a sample and seven-fold “between” samples when comparing the full spectrum to the three-point method of analysis [Zhang, H., Byrne, R.H. 1996. Spectrophotometric pH measurements of surface seawater at in-situ conditions: absorbance and protonation behaviour of thymol blue. Marine Chemistry 52, 17–25].  相似文献   
6.
Modification of brackish marshes by nonindigenousPhragmites australis has occurred across a broad geographical area in eastern North America. Among its effects on marsh processes,Phragmites may be increasingly unfavorable to marsh surface fishes as its invasion progresses within an estuary. We assessed the effect of thePhragmites invasion on resident marsh surface fishes by examining the population response ofFundulus heteroclitus (mummichog, 5–48 mm TL) andF. luciae (spotfin killifish, 5–41 mm TL) to four distinct invasion stages in three estuaries of the U.S. mid Atlantic region (New Jersey, Delaware, and Maryland). We documented precipitous declines in mean catch per unit effort ofF. heteroclitus in pit traps from natural marsh (51.6), through initial (33.8), early (12.3), and late invasion stages (2.4) across all sites. A similar pattern was documented forF. luciae, with mean catch per unit effort in pit traps declining from natural marsh (48.9), through initial (39.1), early (9.3), and late invasion stages (2.7). Population structure of both species also changed somewhat across invasion stages such that we collected a narrower size range of individuals of both species from late invasion stages. Patterns suggest that as thePhragmites invasion progresses, there is a decline in habitat function for larval and juvenileF. heteroclitus and an increased risk of extirpation ofF. luciae from brackish marshes along the east coast of the U.S.  相似文献   
7.
Uranium co-precipitation with iron oxide minerals   总被引:2,自引:0,他引:2  
In oxidizing environments, the toxic and radioactive element uranium (U) is most soluble and mobile in the hexavalent oxidation state. Sorption of U(VI) on Fe-oxides minerals (such as hematite [α-Fe2O3] and goethite [α-FeOOH]) and occlusion of U(VI) by Fe-oxide coatings are processes that can retard U transport in environments. In aged U-contaminated geologic materials, the transport and the biological availability of U toward reduction may be limited by coprecipitation with Fe-oxide minerals. These processes also affect the biological availability of U(VI) species toward reduction and precipitation as the less soluble U(IV) species by metal-reducing bacteria.To examine the dynamics of interactions between U(VI) and Fe oxides during crystallization, Fe-oxide phases (containing 0.5 to 5.4 mol% U/(U + Fe)) were synthesized by means of solutions of U(VI) and Fe(III). Wet chemical (digestions and chemical extractions) and spectroscopic techniques were used to characterize the synthesized Fe oxide coprecipitates after rinsing in deionized water. Leaching the high mol% U solids with concentrated carbonate solution (for sorbed and solid-phase U(VI) species) typically removed most of the U, leaving, on average, about 0.6 mol% U. Oxalate leaching of solids with low mol% U contents (about 1 mol% U or less) indicated that almost all of the Fe in these solids was crystalline and that most of the U was associated with these crystalline Fe oxides. X-ray diffraction and Fourier-transform infrared (FT-IR) spectroscopic studies indicate that hematite formation is preferred over that of goethite when the amount of U in the Fe-oxides exceeds 1 mol% U (∼4 wt% U). FT-IR and room temperature continuous wave luminescence spectroscopic studies with unleached U/Fe solids indicate a relationship between the mol% U in the Fe oxide and the intensity or existence of the spectra features that can be assigned to UO22+ species (such as the IR asymmetric υ3 stretch for O = U = O for uranyl). These spectral features were undetectable in carbonate- or oxalate-leached solids, suggesting solid phase and sorbed U(VI)O22+ species are extracted by the leach solutions. Uranium L3-edge x-ray absorption spectroscopic (XAFS) analyses of the unleached U-Fe oxide solids with less than 1 mol% U reveal that U(VI) exists with four O atoms at radial distances of 2.19 and 2.36 Å and second shell Fe at a radial distance at 3.19 Å.Because of the large ionic radius of UO22+ (∼1.8 Å) relative to that of Fe3+ (0.65 Å), the UO22+ ion is unlikely to be incorporated in the place of Fe in Fe(III)-oxide structures. Solid-phase U(VI) can exist as the uranyl [U(VI)O22+] species with two axial U-O double bonds and four or more equatorial U-O bonds or as the uranate species (such as γ-UO3) without axial U-O bonds. Our findings indicate U6+ (with ionic radii of 0.72 to 0.8 Å, depending on the coordination environment) is incorporated in the Fe oxides as uranate (without axial O atoms) until a point of saturation is reached. Beyond this excess in U concentration, precipitating U(VI) forms discrete crystalline uranyl phases that resemble the uranyl oxide hydrate schoepite [UO2(OH)2·2H2O]. Molecular modeling studies reveal that U6+ species could bond with O atoms from distorted Fe octahedra in the hematite structure with an environment that is consistent with the results of the XAFS. The results provide compelling evidence of U incorporation within the hematite structure.  相似文献   
8.
ABSTRACT

Rain-on-snow (ROS) has the potential to produce devastating floods by enhancing runoff from snowmelt. Although a common phenomenon across the eastern United States, little research has focused on ROS in this region. This study used a gridded observational snow dataset from 1960–2009 to establish a comprehensive seasonal climatology of ROS for this region. Additionally, different rain and snow thresholds were compared while considering temporal trends in ROS occurrence at four grid cells representing individual locations. Results show most ROS events occur in MAM (March-April-May). ROS events identified with rainfall >1 cm are more frequent near the east coast and events identified with >1 cm snow loss are more common in higher latitudes and/or elevations. Decreasing trends in DJF (December-January-February) ROS events were identified near the coastal areas, with increasing trends in the northern portion of the domain. Significant decreasing trends in MAM ROS are likewise present on a regional scale. Factors playing a role in snowpack depth and rainfall, such as movement of storm tracks in this region, should be considered with future work to discern mechanisms causing the changes in ROS frequency.  相似文献   
9.
10.
Petrographic and SEM observations on 478 samples of six quartzose sandstones provide a data base that can be used to evaluate the role of intergranular pressure solution (IPS) in sandstone diagenesis and to constrain predictive models of the pressure solution process. SEM examination of grain contacts that have experienced pressure solution suggests that IPS occurs at the interior portions of contacts where the greatest stress is concentrated and that granulation of quartz grains at points of contact may contribute to the process. The chemical compaction fabrics that result from IPS suggest that the process is most commonly induced by effective lithostatic stress and that the resulting strain is uniaxial.Numerous geological variables influence IPS. Grain size exerts a fundamental influence, with finer grained samples experiencing more IPS than coarser grained samples. On both local and regional scales, IPS is inhibited by poor sorting, an abundance of ductile grains, the presence of “shallow” cement, slow rates of shallow burial, and overpressured conditions. In contrast, IPS is enhanced by the presence of illite grain coatings, increased maximum burial depth, rapid rates of shallow burial, longer times spent at great depths, higher temperatures, and high volumes and rates of fluid flow.Silica budgets indicate that some of the analyzed sandstones approximate mass balance whereas others have exported silica. Calculations of fluid flow requirements indicate that advanced stages of IPS are favored by high volume, high velocity fluid flow. Such flow can occur as a result of uplift of basin margins, which is typical of foreland and intractonic basins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号