首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   3篇
测绘学   3篇
地球物理   10篇
地质学   7篇
海洋学   3篇
天文学   1篇
自然地理   4篇
  2022年   1篇
  2020年   2篇
  2017年   2篇
  2016年   3篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2002年   2篇
  2000年   2篇
  1996年   2篇
  1993年   1篇
  1984年   1篇
  1972年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
A new method was developed for analysing and delineating streambed water fluxes, flow conditions and hydraulic properties using coiled fibre‐optic distributed temperature sensing or closely spaced discrete temperature sensors. This method allows for a thorough treatment of the spatial information embedded in temperature data by creating a matrix visualization of all possible sensor pairs. Application of the method to a 5‐day field dataset reveals the complexity of shallow streambed thermal regimes. To understand how velocity estimates are affected by violations of assumptions of one‐dimensional, saturated, homogeneous flow and to aid in the interpretation of field observations, the method was also applied to temperature data generated by numerical models of common field conditions: horizontal layering, presence of lateral flow and variable streambed saturation. The results show that each condition creates a distinct signature visible in the triangular matrices. The matrices are used to perform a comparison of the behaviour of one‐dimensional analytical heat‐tracing models. The results show that the amplitude ratio‐based method of velocity calculation leads to the most reliable estimates. The minimum sensor spacing required to obtain reliable velocity estimates with discrete sensors is also investigated using field data. The developed method will aid future heat‐tracing studies by providing a technique for visualizing and comparing results from fibre‐optic distributed temperature sensing installations and testing the robustness of analytical heat‐tracing models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
2.
A crustal scalar magnetic anomaly map of Canada and the northern United States is derived using data collected from the MAGSAT satellite. The anomalies are correlated to geological features. Basins associated with failed arms of old rifts have high magnetic anomalies. The Rocky Mountains, the Appalachian Mountains, the suture zone of the Grenville province, modern hotspots and ocean ridges have low magnetic anomalies.  相似文献   
3.
The troposphere delay is an important source of error for precise GNSS positioning due to its high correlation with the station height parameter. It has been demonstrated that errors in mapping functions can cause sub-annual biases as well as affect the repeatability of GNSS solutions, which is a particular concern for geophysical studies. Three-dimensional ray-tracing through numerical weather models (NWM) is an excellent approach for capturing the directional and daily variation of the tropospheric delay. Due to computational complexity, its use for positioning purposes is limited, but it is an excellent tool for evaluating current state-of-the-art mapping functions used for geodetic positioning. Many mapping functions have been recommended in the past such as the Niell Mapping Function (NMF), Vienna Mapping Function 1 (VMF1), and the Global Mapping Function (GMF), which have been adopted by most IGS analysis centers. A new Global Pressure Temperature model (GPT2) has also been developed, which has been shown to improve upon the original atmospheric model used for the GMF. Although the mapping functions mentioned above use the same functional formulation, they vary in terms of their atmospheric source and calibration approach. A homogeneous data set of three-dimensional ray-traced delays is used to evaluate all components of the mapping functions, including their underlying functional formulation, calibration, and compression method. Additionally, an alternative representation of the VMF1 is generated using the same atmospheric source as the truth data set to evaluate the differences in ray-tracing methods and their effect on the end mapping function. The results of this investigation continue to support the use of the VMF1 as the mapping function of choice when geodetic parameters are of interest. Further support for the GPT2 and GMF as reliable back-ups when the VMF1 is not available was found due to their high consistency with the NWM-derived mapping function. Additionally, a small latitude-dependent bias in station height was found in the current mapping functions. This bias was identified to be due to the assumption of a constant radius of the earth and was largest at the poles and at the equator. Finally, an alternative version of the VMF1 is introduced, namely the UNB-VMF1 which provides users with an independent NWM-derived mapping function to support geodetic positioning.  相似文献   
4.
Abstract

Increasing wolf populations are a concern for wildlife managers in the Midwestern U.S. Understanding the psychological mechanisms that contribute to public perceptions of risk will enable development of strategies that seek to mitigate these risks, and suggest where outreach efforts may facilitate acceptance of wolves. We examined the psychological factors that influence Illinois residents’ perceived risks from wolves. We hypothesized that individuals’ perceived risks from wolves were a function of their attitudes toward wolves, negative affect toward wolves, and basic beliefs about wildlife. Data were obtained from a survey of the Illinois public (n?=?784). Negative affect and attitudes toward wolves were direct predictors of perceived risks. Basic beliefs predicted attitudes and negative affect toward wolves. Negative affect predicted attitudes. Basic beliefs had direct and indirect effects on perceived risks.  相似文献   
5.
Temperature and moisture content in the variably saturated subsurface are two of the most important physical parameters that govern a wide variety of geochemical and ecological processes. An understanding of thermal and hydraulic processes and properties of transient vadose zones is therefore fundamental in the evaluation of such processes. Here, an investigation of the thermal regime and subsurface properties of a tidally affected, variably saturated streambed is presented. Field and laboratory measurements, as well as a forward numerical model, are jointly employed in the investigation. Temperature, soil moisture, surface level, and water level data were recorded in a transect perpendicular to a tidally driven stream. Frequency‐domain analysis of the subsurface temperature measurements revealed the rapid decay of the tidal temperature driver within the top ~30 cm of sediment. Several techniques were used to evaluate subsurface thermal and hydraulic properties, including thermal conductivity and the soil water retention curve. These properties were used to constrain a forward numerical model that included coupled treatment of relevant variable saturation thermal and hydraulic physics. Even though the investigated vadose zone is intermittent and relatively shallow ( 20 cm), the results illustrate how error can be introduced into heat‐transport calculations if unsaturated conditions are not taken into account.  相似文献   
6.
Potential fish habitat along the Drôme River, France, is a function of the distribution of large woody debris, boulders, undercut banks, gravel substrate, and pools. The distribution of these features is, in turn, a function of channel geomorphology, watershed and riparian forest characteristics. We conducted field work and analysed aerial photographs for 190 elementary segments of 500 m length along the Drôme River's 95 km course from the Alps westward to its confluence with the Rhône River near Loriol. The Drôme River does not follow the classic pattern of a monotone downstream decrease in gradient and change in channel characteristics. Although channel gradient, braided index and channel incision all decrease downstream, stream power is independent of longitudinal distance. These variables are largely controlled by geomorphic, human or hydrologic factors at the reach scale. Potential fish habitat richness decreases downstream, but individual habitat variables affecting habitat richness do not necessarily decrease downstream, many being controlled by local factors rather than by position along the continuum. Large woody debris is more abundant in braided reaches located directly downstream of confluences with main tributaries or downstream input sites. Boulders are most abundant downstream of failed bank protection works or in gorges. To improve fish habitat in the Drôme River, we recommend taking a long-term and large-scale perspective. Because structures placed in this unstable channel are likely to be washed downstream, we propose to emulate natural river dynamics and to permit large woody debris to enter the channel in unstable reaches via bank erosion, and that this debris not be removed (as is routinely done now) but permitted to migrate downstream through the system, creating fish habitat en route.  相似文献   
7.
Crushed salt can be used as backfill to bury and conduct heat away from radioactive waste in salt repositories. As the crushed salt compacts during reconsolidation, its thermal, mechanical and hydrologic properties will change in a manner related to the porosity. Measurements of crushed salt thermal properties are conducted to evaluate such relationships. A simple mixture theory model is presented to predict thermal conductivity of consolidating salt in repository conditions. Experimental work was completed to evaluate the model by measuring thermal conductivity, thermal diffusivity and specific heat of crushed salt as a function of porosity and temperature. Sample porosity ranged from 0 to 46 %, and measurements were made at ambient pressure, from room temperature to 300 °C. These are the temperature conditions expected in a radioactive waste storage facility. Crushed salt thermal conductivity decreases with increasing porosity and temperature. Thermal diffusivity showed little porosity dependence but decreased with increasing temperature. Specific heat also shows little porosity dependence but increases with increasing temperature. Fracture porosity in deformed bedded salt cores appears to reduce thermal conductivity more dramatically than inter- and intra-granular porosity in consolidated salt. A long-term effort to dry crushed salt at high temperatures resulted in a 0.48 weight-percent loss of water that had resided at grain boundaries and in intra-granular fluid inclusions. While this loss does not significantly affect thermal properties, the release of this water volume could impact the mechanical response of the reconsolidating salt and host rock.  相似文献   
8.
9.
Three-dimensional ray tracing through a numerical weather model has been applied to a global precise point positioning (PPP) campaign for modeling both the elevation angle- and azimuth-dependence of the tropospheric delay. Rather than applying the ray-traced slant delays directly, the delay has been parameterized in terms of slant factors, which are applied in a similar manner to traditional mapping functions, but which can account for the azimuthal asymmetry of the delay. Five strategies are considered: (1) Vienna Mapping Functions 1 (VMF1) and estimation of a residual zenith delay parameter; (2) VMF1, estimation of a residual zenith delay and estimation of two tropospheric gradient parameters; (3) three-dimensional ray-traced slant factors and estimation of a residual zenith delay; (4) using only ray-traced slant factors and no estimation of any tropospheric parameters and; (5) using both ray-traced slant factors and estimating a residual zenith delay and two tropospheric gradient parameters. The use of the ray-traced slant factors (solution 3) showed a 3.8% improvement in the repeatability of the up component when compared to the assumption of a symmetric atmosphere (solution 1), while the estimation of two tropospheric gradient parameters gave the best results showing an 7.6% improvement over solution 1 in the up component. Solution 4 performed well in the horizontal domain, allowing for sub-centimeter repeatability but the up component was degraded due to deficiencies in the modeling of the zenith delay, particularly for stations located at equatorial latitudes. The magnitude of the differences in the mean coordinates between solution 2 and solution 3, and the strong correlation with the differences between the north component and the ray-traced gradients (coefficient of correlation of 0.83), as well as the impact of observation geometry on the gradient solution indicate that the use of the ray-traced slant factors could have an implication on the realization of reference frames. The estimated tropospheric products from the PPP solutions were compared to those derived from ray tracing. For the zenith delay, a root mean square (RMS) of 5.4 mm was found, while for the gradient terms, a correlation coefficient of 0.46 for the N–S and 0.42 for the E–W was found for the north–south and east–west components, suggesting that there are still important differences in the gradient parameters which could be due to either errors in the NWM or to non-tropospheric error sources leaking into the PPP-estimated gradients.  相似文献   
10.
Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential long-term effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号