首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
测绘学   15篇
地球物理   3篇
地质学   2篇
自然地理   11篇
  2022年   2篇
  2020年   1篇
  2019年   2篇
  2016年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1984年   1篇
排序方式: 共有31条查询结果,搜索用时 62 毫秒
1.
Local Spatiotemporal Modeling of House Prices: A Mixed Model Approach   总被引:3,自引:0,他引:3  
The real estate market has long provided an active application area for spatial–temporal modeling and analysis and it is well known that house prices tend to be not only spatially but also temporally correlated. In the spatial dimension, nearby properties tend to have similar values because they share similar characteristics, but house prices tend to vary over space due to differences in these characteristics. In the temporal dimension, current house prices tend to be based on property values from previous years and in the spatial–temporal dimension, the properties on which current prices are based tend to be in close spatial proximity. To date, however, most research on house prices has adopted either a spatial perspective or a temporal one; relatively little effort has been devoted to situations where both spatial and temporal effects coexist. Using ten years of house price data in Fife, Scotland (2003–2012), this research applies a mixed model approach, semiparametric geographically weighted regression (GWR), to explore, model, and analyze the spatiotemporal variations in the relationships between house prices and associated determinants. The study demonstrates that the mixed modeling technique provides better results than standard approaches to predicting house prices by accounting for spatiotemporal relationships at both global and local scales.  相似文献   
2.
3.
4.
Increasingly, the geographically weighted regression (GWR) model is being used for spatial prediction rather than for inference. Our study compares GWR as a predictor to (a) its global counterpart of multiple linear regression (MLR); (b) traditional geostatistical models such as ordinary kriging (OK) and universal kriging (UK), with MLR as a mean component; and (c) hybrids, where kriging models are specified with GWR as a mean component. For this purpose, we test the performance of each model on data simulated with differing levels of spatial heterogeneity (with respect to data relationships in the mean process) and spatial autocorrelation (in the residual process). Our results demonstrate that kriging (in a UK form) should be the preferred predictor, reflecting its optimal statistical properties. However the GWR-kriging hybrids perform with merit and, as such, a predictor of this form may provide a worthy alternative to UK for particular (non-stationary relationship) situations when UK models cannot be reliably calibrated. GWR predictors tend to perform more poorly than their more complex GWR-kriging counterparts, but both GWR-based models are useful in that they provide extra information on the spatial processes generating the data that are being predicted.  相似文献   
5.
Journal of Geographical Systems - Scale is a central concept in the geographical sciences and is an intrinsic property of many spatial systems. It also serves as an essential thread in the fabric...  相似文献   
6.
7.
Statistical inference is important for all those who engage in the analysis of spatial data. The issue is becoming increasingly important given the explosion in the availability of spatial data and the proliferation of Geographic Information Systems (GIS) across different academic disciplines and application areas. The aim of this paper is to provide a brief overview of some of the concepts and controversies inherent in statistical inference in the hope of raising the level of awareness within the geographic information science community that different points of view exist when it comes to inference. We argue that the concept of statistical inference in spatial data analysis and spatial modelling is perhaps broader than many GIS users imagine. In particular, we argue that different types of inference exist and that process inference is just as valid as sample inference, even though the latter appears to dominate the GIS literature.  相似文献   
8.
9.
10.
Geographically weighted regression (GWR) is an important local technique for exploring spatial heterogeneity in data relationships. In fitting with Tobler’s first law of geography, each local regression of GWR is estimated with data whose influence decays with distance, distances that are commonly defined as straight line or Euclidean. However, the complexity of our real world ensures that the scope of possible distance metrics is far larger than the traditional Euclidean choice. Thus in this article, the GWR model is investigated by applying it with alternative, non-Euclidean distance (non-ED) metrics. Here we use as a case study, a London house price data set coupled with hedonic independent variables, where GWR models are calibrated with Euclidean distance (ED), road network distance and travel time metrics. The results indicate that GWR calibrated with a non-Euclidean metric can not only improve model fit, but also provide additional and useful insights into the nature of varying relationships within the house price data set.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号