首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
测绘学   1篇
  2023年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Ocean wave is one of the important marine dynamic phenomenon that affect human activities. At present, the main observation means include buoy observation, marine numerical prediction model, and microwave remote sensing observation. However, we cannot conduct large-scale observation by buoy, and the marine numerical prediction model’s result is not measured data. Spectrometers and altimeters in microwave remote sensing instruments can also measure spectral parameters. However, SAR, which has a higher resolution, can provide 2D sea surface information. The Sentinel-1 satellite of ESA and GF-3 satellite independently developed by China are now in orbit, and numerous teams are working to retrieve wave parameters from SAR data of these two satellites. In this work, we compared the wave parameter inversion accuracy of Sentinel-1 SAR Interferometric Wide Swath model and GF-3 SAR strip model based on wave spectrum, which provides a reference for the wide application of GF-3 SAR data. The sea states according to the ERA-5 data of ECMWF are divided into three categories: low, moderate, and high sea states. The sea areas of Hormuz and Malacca Straits of the maritime Silk Road in the Indian Ocean and the coastal waters of the Pacific and Atlantic Ocean are selected as the study areas. Meanwhile, the SAR data of Sentinel-1 and GF-3 satellites under different sea states are selected as the data source. The MPI method is used to retrieve the wave spectrum and wave parameters using the E spectrum as the initial guess. Subsequently, the SAR data inversion results of the two satellites under different sea states are compared with the ERA-5 and buoy wave data. The inversion accuracy of the wave parameters can be verified by calculating the values of the Root Mean Square Error (RMSE) and Scatter Index (SI), and the inversion accuracy of the wave parameters of the two satellites under different sea conditions can be compared. The RMSEs of significant wave height (Hs) retrieved by GF-3 SAR under low, moderate, and high sea conditions are 0.30, 0.34, and 0.48 m, and those of mean wave period (Tm) are 1.02, 0.99, and 0.95 s, respectively, compared with the ERA-5 data. In addition, the RMSE of Hs retrieved by Sentinel-1 SAR under low, moderate, and high sea conditions are 0.30, 0.29, and 0.33 m, respectively, and the RMSEs of Tm are 0.94, 0.51, and 0.64 s, respectively. The RMSEs of Hs and Tm under different sea conditions retrieved by GF-3 SAR are 0.38 m and 0.99 s, and those of Hs and Tm retrieved by Sentinel-1 SAR are 0.31 m and 0.70 s, respectively, compared with the ERA-5 data. The RMSEs of the retrieved Hs and Tm of GF-3 satellite are 0.42 m and 0.94 s, and those of the retrieved Hs and Tm of Sentinel-1 are 0.40 m and 0.91 s, respectively, compared with the buoy data. The SAR wave parameter inversion of Sentinel-1 and GF-3 SAR based on the wave spectrum shows that the inversion results of the two satellites meet the index requirements in this field, and the accuracy of the inversion results of wave spectrum is the same. The strip mode SAR data of GF-3 satellite, China’s first self-developed SAR satellite, has broad prospects in marine research fields. © 2023 National Remote Sensing Bulletin. All rights reserved.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号