首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   50篇
  国内免费   94篇
测绘学   7篇
地球物理   119篇
地质学   61篇
海洋学   351篇
综合类   44篇
自然地理   75篇
  2024年   1篇
  2023年   10篇
  2022年   25篇
  2021年   10篇
  2020年   28篇
  2019年   12篇
  2018年   22篇
  2017年   16篇
  2016年   26篇
  2015年   13篇
  2014年   30篇
  2013年   50篇
  2012年   17篇
  2011年   25篇
  2010年   18篇
  2009年   30篇
  2008年   40篇
  2007年   37篇
  2006年   33篇
  2005年   28篇
  2004年   14篇
  2003年   20篇
  2002年   18篇
  2001年   16篇
  2000年   15篇
  1999年   14篇
  1998年   20篇
  1997年   12篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
  1985年   12篇
  1984年   11篇
  1983年   5篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
排序方式: 共有657条查询结果,搜索用时 15 毫秒
1.
Water quality is often highly variable both in space and time, which poses challenges for modelling the more extreme concentrations. This study developed an alternative approach to predicting water quality quantiles at individual locations. We focused on river water quality data that were collected over 25 years, at 102 catchments across the State of Victoria, Australia. We analysed and modelled spatial patterns of the 10th, 25th, 50th, 75th and 90th percentiles of the concentrations of sediments, nutrients and salt, with six common constituents: total suspended solids (TSS), total phosphorus (TP), filterable reactive phosphorus (FRP), total Kjeldahl nitrogen (TKN), nitrate-nitrite (NOx), and electrical conductivity (EC). To predict the spatial variation of each quantile for each constituent, we developed statistical regression models and exhaustively searched through 50 catchment characteristics to identify the best set of predictors for that quantile. The models predict the spatial variation in individual quantiles of TSS, TKN and EC well (66%–96% spatial variation explained), while those for TP, FRP and NOx have lower performance (37%–73% spatial variation explained). The most common factors that influence the spatial variations of the different constituents and quantiles are: annual temperature, percentage of cropping land area in catchment and channel slope. The statistical models developed can be used to predict how low- and high-concentration quantiles change with landscape characteristics, and thus provide a useful tool for catchment managers to inform planning and policy making with changing climate and land use conditions.  相似文献   
2.
Himmerfjärd is a Swedish estuary bordering on the Baltic. The estuary lacks astronomical tides and its circulation is driven by winds and freshwater runoff. Because of a tertiary sewage treatment plant located at its inner end, the estuary is becoming increasingly eutrophic. A field study was carried out for a 78-day period in late summer and early fall of 1977 to determine rates of nutrient transport and to construct nutrient budgets. Since physical parameters (current velocity, temperature, salinity, winds and water level changes) were measured more frequently than nutrients (phosphate, nitrate, nitrite and ammonium) it was necessary to develop a suitable method to calculate nutrient flux time series and net nutrient fluxes. Over the study period, Himmerfjärd imported phosphorus and exported nitrogen. Direction of nutrient fluxes and changes in flux direction were consistent with the structure of the baroclinic currents.  相似文献   
3.
The changes in the phytoplankton absorption properties during a diurnal cycle were investigated at one station located in the north-western area of the Alborán Sea. The experiment was performed in spring when the water column was strongly stratified. This hydrological situation permitted the establishment of a deep chlorophyll a (chl a) fluorescence maximum (DFM) which was located on average close to the lower limit of the mixed layer and the nutricline. The relative abundance of pico-phytoplankton (estimated as its contribution to the total chl a) was higher in the surface, however, micro-phytoplankton dominated the community at the DFM level. Chl a specific absorption coefficient (a*(λ)) also varied with optical depth, with a* (the spectrally average specific absorption coefficient) decreasing by 30% at the DFM depth with respect to the surface. A significant negative correlation between the contribution of the micro-phytoplankton to the total chl a and a* was obtained indicating that a* reduction was due to changes in the packaging effect. Below the euphotic layer, a* increased three-fold with respect to the DFM, which agrees with the expected accumulation of accessory pigments relative to chl a as an acclimation response to the low available irradiance. The most conspicuous change during the diurnal cycle was produced in the euphotic layer where the chl a concentration decreased significantly in the afternoon (from a mean concentration of 1.1 μg L−1 to 0.7 μg L−1) and increased at dusk when it averaged 1.4 μg L−1. In addition, a* and the blue-to-red absorption band ratio increased in the afternoon. These results suggest that a*(λ) diurnal variability was due to increase in photo-protective and accessory pigments relative to chl a. The variation ranges of a*(λ) at 675 and 440 nm (the absorption peaks in the red and blue spectral bands, respectively) in the euphotic layer were 0.01–0.04 and 0.02–0.10 m2 mg−1 chl a, respectively. Approximately 30% out of this variability can be attributed to the diurnal cycle. This factor should therefore be taken into account in refining primary production models based on phytoplankton light absorption.  相似文献   
4.
Abstract. During the austral summer 1997–98, within the framework of the activities of the Climatic Long-term Interaction for the Massbalance in Antarctica (CLIMA) Project of the Italian National Program for Antarctic Research (PNRA) in the Ross Sea, measurements were conducted to focus on the role of dissolved iron, copper and manganese as micronutrients, and on their distribution in suspended particulate matter in different water masses. Sampling was carried out in two selected shelf areas, both important for formation and mixing processes of the water bodies.
Metal data were evaluated together with physical measurements and classical chemical parameters such as oxygen and nutrients.
In both the studied areas, the distribution of dissolved metals along the waste column confirmed their micronutrient behaviour, showing depletion where phytoplanktonic activities occurred.
The trend of particulate metals underlined the scavenging phenomena along the water column and presented an interesting correlation at intermediate depths with the amount and origin of suspended matter.  相似文献   
5.
Alkenone unsaturation indices (UK37 and UK′37) have long been used as proxies for surface water temperature in the open ocean. Recent studies have suggested that in other marine environments, variables other than temperature may affect both the production of alkenones and the values of the indices. Here, we present the results of a reconnaissance field study in which alkenones were extracted from particulate matter filtered from the water column in Chesapeake Bay during 2000 and 2001. A multivariate analysis shows a strong positive correlation between UK37 (and UK′37) values and temperature, and a significant negative correlation between UK37 (and UK′37) values and nitrate concentrations. However, temperature and nitrate concentrations also co-vary significantly. The temperature vs. UK37 relationships (UK37=0.018 (T)−0.162, R2=0.84, UK′37=0.013 (T)−0.04, R2=0.80) have lower slopes than the open-ocean equations of Prahl et al. [1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta 52, 2303–2310] and Müller et al. [1998. Calibration of the alkenone paleotemperature index UK′37 based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochimica et Cosmochimica Acta 62, 1757–1772], but are similar to the relationships found in controlled studies with elevated nutrient levels and higher nitrate:phosphate (N:P) ratios. This implies that high nutrient levels in Chesapeake Bay have either lowered the UK37 vs. temperature slope, or nutrient levels are the main controller of the UK37 index. In addition, particularly high abundances (>5% of total C37 alkenones) of the tetra-unsaturated ketone, C37:4, were found when water temperatures reached 25 °C or higher, thus posing further questions about the controls on alkenone production as well as the biochemical roles of alkenones.  相似文献   
6.
Most marginal seas in the North Pacific are fed by nutrients supported mainly by upwelling and many are undersaturated with respect to atmospheric CO2 in the surface water mainly as a result of the biological pump and winter cooling. These seas absorb CO2 at an average rate of 1.1 ± 0.3 mol C m−2yr−1 but release N2/N2O at an average rate of 0.07 ± 0.03 mol N m−2yr−1. Most of primary production, however, is regenerated on the shelves, and only less than 15% is transported to the open oceans as dissolved and particulate organic carbon (POC) with a small amount of POC deposited in the sediments. It is estimated that seawater in the marginal seas in the North Pacific alone may have taken up 1.6 ± 0.3 Gt (1015 g) of excess carbon, including 0.21 ± 0.05 Gt for the Bering Sea, 0.18 ± 0.08 Gt for the Okhotsk Sea; 0.31 ± 0.05 Gt for the Japan/East Sea; 0.07 ± 0.02 Gt for the East China and Yellow Seas; 0.80 ± 0.15 Gt for the South China Sea; and 0.015 ± 0.005 Gt for the Gulf of California. More importantly, high latitude marginal seas such as the Bering and Okhotsk Seas may act as conveyer belts in exporting 0.1 ± 0.08 Gt C anthropogenic, excess CO2 into the North Pacific Intermediate Water per year. The upward migration of calcite and aragonite saturation horizons due to the penetration of excess CO2 may also make the shelf deposits on the Bering and Okhotsk Seas more susceptible to dissolution, which would then neutralize excess CO2 in the near future. Further, because most nutrients come from upwelling, increased water consumption on land and damming of major rivers may reduce freshwater output and the buoyancy effect on the shelves. As a result, upwelling, nutrient input and biological productivity may all be reduced in the future. As a final note, the Japan/East Sea has started to show responses to global warming. Warmer surface layer has reduced upwelling of nutrient-rich subsurface water, resulting in a decline of spring phytoplankton biomass. Less bottom water formation because of less winter cooling may lead to the disappearance of the bottom water as early as 2040. Or else, an anoxic condition may form as early as 2200 AD. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
Phytoplankton variability on the Faroe Shelf   总被引:2,自引:2,他引:2  
  相似文献   
8.
Pyruvate kinase (PK) activity measurements are used to assess the role of carbohydrates in global feeding of mesozooplankton communities inhabiting an estuary plume. As a consequence of a remarkably low freshwater discharge rate, the sea surface layers of the area under estuarine influence showed a very moderate salinity fall and a nearly total depletion in nitrates, whereas higher levels of these nutrients were found in deeper, more saline, layers. Small-scale PK activity variations in mesozooplankton appear to be closely correlated to nitrate integration values within the water column. The results were analysed in comparison with literature reports. The study produced a coherent overall interpretation, which strongly supports the reliability of this new biochemical tool in detecting assimilation of trace carbohydrates in the diet of mesozooplankton.  相似文献   
9.
Seasonal variations in dissolved nitrogen and silica loadings were related to seasonal variability in river discharge. Dissolved nutrient concentrations measured weekly at three stations in the Yaquina River, Oregon from 1999 through 2001, and then monthly in 2002 were used as the basis for developing a nutrient loading regression as part of a larger agency program for evaluating nutrient processes. Because realistic models of nutrient transport require dense data sets to capture both long and short term fluctuations in nutrient concentrations, data at one freshwater station also were collected hourly for the same years using an in-stream monitor.The effects of storm events on dissolved nutrient transport were examined during three storms, including one in a high rainfall-discharge year, and two in average years, one of which followed a drought year. During the drought year (WY2001), total dissolved nitrate input was considerably less than in wetter years. Dissolved nitrate concentrations, however, were unusually high in the first winter storm runoff after the drought. The freshwater dissolved nitrate nitrogen loads varied from 40,380 kg day−1 during a high-flow storm event to 0.11 kg day−1 during late summer, low flow conditions. Dissolved silica dynamics differed from those of nitrate because during storm events, silica concentrations in the Yaquina River decreased to near zero at the storm height, probably due to dilution by near surface or overland flow, and later recovered.During the time interval studied, over 94% of the dissolved nitrate and silica were transported from the watershed during the winter months of greater rainfall, indicating that seasonality and river flow are primary factors when considering nutrient loadings from this watershed system.  相似文献   
10.
The trend in Irish Sea nutrient concentrations over the last four decades has been considered to reflect changes in anthropogenic loading. Comparison of a long-term database for the Menai Strait, North Wales, with an established historic data set for the Cypris station, Isle of Man, indicates that climate also has a significant influence on observations of nutrient concentrations. Data are presented detailing long-term shifts in nitrate, phosphate and silicate measurements since the 1960s at these two fixed sampling sites in the Irish Sea. Broad systematic changes observed in all three nutrients over the decades show a rise from the 1960s through to the 1980s, followed generally by an overall decline in the 1990s. Decadal-scale salinity changes occur in the opposite sense to nutrient changes. Anthropogenic inputs from freshwater cannot fully account for observed nutrient trends, neither is there evidence for shifts in nutrient concentrations in oceanic waters over the past four decades. Climatically forced movement in the geographical position of the freshwater/seawater mixing zone over a decadal time scale could, however, give rise to the observed shifts in nutrient concentration and salinity. This cannot alter nutrient concentration and salinity per se, but causes the measurements taken at fixed sampling sites to fluctuate inversely over this time scale. It is concluded that there is complex interplay between anthropogenic loading and climate affecting the distribution of nutrients in the Irish Sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号