首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36210篇
  免费   9595篇
  国内免费   7101篇
测绘学   4280篇
大气科学   7522篇
地球物理   9250篇
地质学   16525篇
海洋学   5577篇
天文学   2300篇
综合类   2513篇
自然地理   4939篇
  2025年   53篇
  2024年   935篇
  2023年   847篇
  2022年   1280篇
  2021年   1503篇
  2020年   1689篇
  2019年   1961篇
  2018年   1472篇
  2017年   1780篇
  2016年   1813篇
  2015年   1840篇
  2014年   2367篇
  2013年   2736篇
  2012年   2419篇
  2011年   2413篇
  2010年   1940篇
  2009年   2593篇
  2008年   2476篇
  2007年   2683篇
  2006年   2541篇
  2005年   2012篇
  2004年   1936篇
  2003年   1657篇
  2002年   1350篇
  2001年   1133篇
  2000年   1071篇
  1999年   978篇
  1998年   961篇
  1997年   782篇
  1996年   687篇
  1995年   578篇
  1994年   493篇
  1993年   414篇
  1992年   315篇
  1991年   242篇
  1990年   172篇
  1989年   157篇
  1988年   136篇
  1987年   84篇
  1986年   63篇
  1985年   67篇
  1984年   36篇
  1982年   29篇
  1981年   30篇
  1980年   23篇
  1979年   17篇
  1977年   22篇
  1976年   27篇
  1973年   18篇
  1971年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
A micropolar elastoplastic model for soils is formulated and a series of finite element analyses are employed to demonstrate the use of a micropolar continuum in overcoming the numerical difficulties encountered in application of finite element method in standard Cauchy–Boltzmann continuum. Three examples of failure analysis involving a deep excavation, shallow foundation, and a retaining wall are presented. In all these cases, it is observed that the length scale introduced in the polar continuum regularizes the incremental boundary value problem and allows the numerical simulation to be continued until a clear collapse mechanism is achieved. The issue of grain size effect is also discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
2.
A discrete element modelling of bonded granulates and investigation on the bond effect on their behaviour are very important to geomechanics. This paper presents a two‐dimensional (2‐D) discrete element theory for bonded granulates with bond rolling resistance and provides a numerical investigation into the effect of bond rolling resistance on the yielding of bonded granulates. The model consists of mechanical contact models and equations governing the motion of bonded particles. The key point of the theory is that the assumption in the original bond contact model previously proposed by the authors (55th CSCE‐ASCE Conference, Hamilton, Ont., Canada, 2002; 313–320; J. Eng. Mech. (ASCE) 2005; 131 (11):1209–1213) that bonded particles are in contact at discrete points, is here replaced by a more reliable assumption that bonded particles are in contact over a width. By making the idealization that the bond contact width is continuously distributed with the normal/tangential basic elements (BE) (each BE is composed of spring, dashpot, bond, slider or divider), we establish a bond rolling contact model together with bond normal/tangential contact models, and also relate the governing equations to local equilibrium. Only one physical parameter β needs to be introduced in the theory in comparison to the original bond discrete element model. The model has been implemented into a 2‐D distinct element method code, NS2D. Using the NS2D, a total of 86 1‐D, constant stress ratio, and biaxial compressions tests have been carried out on the bonded granular samples of different densities, bonding strengths and rolling resistances. The numerical results show that: (i) the new theory predicts a larger internal friction angle, a larger yielding stress, more brittle behaviour and larger final broken contact ratio than the original bond model; (ii) the yielding stress increases nonlinearly with the increasing value of β, and (iii) the first‐yield curve (initiation of bond breakage), which define a zone of none bond breakage and which shape and size are affected by the material density, is amplified by the bond rolling resistance in analogous to that predicted by the original bond model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
3.
It is well known that the Babuska–Brezzi stability criterion or the Zienkiewicz–Taylor patch test precludes the use of the finite elements with the same low order of interpolation for displacement and pore pressure in the nearly incompressible and undrained cases, unless some stabilization techniques are introduced for dynamic analysis of saturated porous medium where coupling occurs between the displacement of solid skeleton and pore pressure. The numerical manifold method (NMM), where the interpolation of displacement and pressure can be determined independently in an element for the solution of up formulation, is derived based on triangular mesh for the requirement of high accurate calculations from practical applications in the dynamic analysis of saturated porous materials. The matrices of equilibrium equations for the second‐order displacement and the first‐order pressure manifold method are given in detail for program coding. By close comparison with widely used finite element method, the NMM presents good stability for the coupling problems, particularly in the nearly incompressible and undrained cases. Numerical examples are given to illustrate the validity and stability of the manifold element developed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
4.
Due to the geological time scales required for observation of catchment evolution, surrogates or analogues of field data are necessary to understand long‐term processes. To investigate long‐term catchment behaviour, two experimental model catchments that developed without rigid boundaries under controlled conditions are examined and a qualitative and quantitative analysis of their evolution is presented. Qualitatively, the experimental catchments have the visual appearance of field scale data. Observation demonstrates that changes in catchment shape and network form are conservative. Quantitative analysis suggests that the catchments reach an equilibrium form while a reduction in the channel network occurs. While the catchments are laboratory scale models, the results provide insights into field scale behaviour. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
5.
Based on daily ECMWF gridpoint data of two winters during 1981—1983 including an ENSOyear,propagation of low frequency oscillations(LFO)during Northern Hemisphere winters andtheir influences upon 30—60 day oscillations of the subtropical jet stream are studied with the sta-tistical methods as complex empirical orthogonal function(CEOF)and so on.Results show that inthe winter of a normal year(1981—1982),30—60 day oscillations in the subtropical zone aremainly in the northern and southern flanks of exit region of jet stream.In the ENSO year(1982—1983),they are mainly in the vicinity of entrance and exit regions of jet stream.Intraseasonalchanges of subtropical jet stream manifested themselves as latitudinal fluctuation or longitudinalprogression or regression of about 40 day period.There are marked differences between propagat-ing passages of low frequency modes responsible for changes of subtropical jet stream in the normalyear(1981—1982)and in the ENSO year(1982—1983).Changes of oscillation amplitude showobvious phases.In general,the one in late winter is stronger than that in early winter,strongestone occurs in February.  相似文献   
6.
Measurements of salinity perturbations in a partially mixed estuary have been used to evaluate the usefulness of an inductive salinometer and to determine some of the characteristics of the salinity perturbations. The salinometer performed satisfactorily under most conditions. Although internal wave like effects were present, the turbulence fluctuations were dominant. The salinity fluctuations and the turbulent fluxes sw and su were found to behave in a manner similar to the density fluctuations in a thermally stratified atmospheric boundary layer and a laboratory open channel flow. A quadrant analysis suggested that the contribution of each quadrant to the turbulent flux changed with Ri. The turbulence parameters ν and cγ were found to decrease and increase respectively as Ri increases.  相似文献   
7.
Large scale geomechanical simulations are being increasingly used to model the compaction of stress dependent reservoirs, predict the long term integrity of under‐ground radioactive waste disposals, and analyse the viability of hot‐dry rock geothermal sites. These large scale simulations require the definition of homogenous mechanical properties for each geomechanical cell whereas the rock properties are expected to vary at a smaller scale. Therefore, this paper proposes a new methodology that makes possible to define the equivalent mechanical properties of the geomechanical cells using the fine scale information given in the geological model. This methodology is implemented on a synthetic reservoir case and two upscaling procedures providing the effective elastic properties of the Hooke's law are tested. The first upscaling procedure is an analytical method for perfectly stratified rock mass, whereas the second procedure computes lower and upper bounds of the equivalent properties with no assumption on the small scale heterogeneity distribution. Both procedures are applied to one geomechanical cell extracted from the reservoir structure. The results show that the analytical and numerical upscaling procedures provide accurate estimations of the effective parameters. Furthermore, a large scale simulation using the homogenized properties of each geomechanical cell calculated with the analytical method demonstrates that the overall behaviour of the reservoir structure is well reproduced for two different loading cases. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
8.
This paper presents a numerical model for predicting the dynamic response of rock mass subjected to large‐scale underground explosion. The model is calibrated against data obtained from large‐scale field tests. The Hugoniot equation of state for rock mass is adopted to calculate the pressure as a function of mass density. A piecewise linear Drucker–Prager strength criterion including the strain rate effect is employed to model the rock mass behaviour subjected to blast loading. A double scalar damage model accounting for both the compression and tension damage is introduced to simulate the damage zone around the charge chamber caused by blast loading. The model is incorporated into Autodyn3D through its user subroutines. The numerical model is then used to predict the dynamic response of rock mass, in terms of the peak particle velocity (PPV) and peak particle acceleration (PPA) attenuation laws, the damage zone, the particle velocity time histories and their frequency contents for large‐scale underground explosion tests. The computed results are found in good agreement with the field measured data; hence, the proposed model is proven to be adequate for simulating the dynamic response of rock mass subjected to large‐scale underground explosion. Extended numerical analyses indicate that, apart from the charge loading density, the stress wave intensity is also affected, but to a lesser extent, by the charge weight and the charge chamber geometry for large‐scale underground explosions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
9.
10.
A computer simulation method has been developed to find efficient drilling grids for mineral deposits. A well-known ore deposit is used as a model to develop an efficient pattern for undiscovered ore bodies in the same area or in other prospects where similar geometry is suspected. The model for this study is the Austinville, Virginia deposit, a Mississippi Valley-type deposit composed of 17 ore bodies totaling 34 million short tons (30 million metric tons). The method employs a computer program that simulates drilling the model deposit with different patterns, including various levels of follow-up drilling. Follow-up holes are drilled in fences at one half the original spacing around holes in the grid that show ore-grade mineralization. Each pattern is drilled 100 times from random starting locations to provide a range of outcomes of drilling, including the best, worst, and most likely. For this study, patterns of 100 drill holes were composed of 10 fences spaced 1000–5000 feet (305–1524 m) apart, each with 10 holes spaced 200–1000 feet (61–305 m) apart. In all, 25 grids were used with zero to three levels of follow-up drilling. The 600/2000 grid, with drill holes spaced 600 feet (183 m) apart in fences spaced 2000 feet (610 m) apart, was compared with the 200/5000 grid because they represented contrasting outcomes. The 600/2000 grid penetrated many ore bodies consistently but with few multiple hits to individual ore bodies; whereas the 200/5000 grid inconsistently penetrated few ore bodies with many multiple hits. The 600/2000 grid was more efficient than the 200/5000 grid at hitting large ore bodies of 1,000,000 short tons or greater (900,000 metric tons or greater) and was made more effective by adding one cycle of follow-up drilling. The 600/2000 grid had a 97% chance of hitting one or more large ore bodies with at least one drill hole per ore body, and the 200/5000 grid had a 64% chance. Once hit, there was an 82% chance that the largest ore body would be penetrated by three or more holes when using the 600/2000 grid and an 88% chance using the 200/5000 grid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号