排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
3.
长江三角洲城市带扩展对区域温度变化的影响 总被引:24,自引:1,他引:23
利用DMSP/OLS 夜间灯光数据、土地利用统计数据和气象站常规观测资料, 结合NOAA/AVHRR、MODIS 反演的月地表温度数据, 定量考察了长江三角洲城市群热岛增温效应对区域温度气候趋势的贡献, 结果表明: ① 1992-2003 年长江三角洲城市化经历了一个快速的空间扩展过程, 宁镇扬、苏锡常、上海大城市区、杭州湾4 个城市群构成了一个“之” 字形城市带, 城市群之间出现城市化连片趋势, 城市带区域内1961-2005 年年平均气温增温 速率为0.28~0.44 oC/10a, 显著高于非城市带区域。② 城市热岛效应对区域平均温度的影响以夏秋季最强, 春季次之, 冬季最弱。③ 长江三角洲城市带热岛强度和城市总人口对数呈线性正相关关系。④ 城市带增温效应使得区域的年平均气温在1961-2005 年间增加了0.072 oC, 其中1991-2005 年间增温幅度为0.047 oC; 年最高气温升高了0.162 oC, 其中1991-2005 年间 增温幅度为0.083 oC, 表明1991-2005 年间长江三角洲城市带的空间扩展正在改变区域温度变化趋势, 且这种增温趋势显著。 相似文献
4.
长江三角洲城市带扩展对区域温度变化的影响 总被引:7,自引:0,他引:7
Based on non-radiance-calibrated DMSP/OLS nighttime light imagery from 1992 to 2003, urban land area statistical data, meteorological data and land surface temperature data retrieved by MODIS and NOAA/AVHRR data, the influence of urbanization on regional cli- matic trend of temperature in the Yangtze River Delta (YRD) was analyzed. Conclusions are as follows: 1) There is a significant urbanization process from 1992 to 2003 in the YRD. Four city clusters of Nanjing–Zhenjiang–Yangzhou, Suzhou–Wuxi–Changzhou, Shanghai and Hangzhou Bay form a zigzag city belt. The increase rate of annual mean air temperature in city-belt is 0.28–0.44℃/10a from 1991 to 2005, which is far larger than that of non-city-belt. 2) The urban heat island (UHI) effect on regional mean air temperature in different seasons is summer>autumn>spring>winter. 3) The UHI intensity and the urban total population logarithm are creditably correlated. 4) The UHI effect made the regional annual mean air temperature increased 0.072℃ from 1961 to 2005, of which 0.047℃ from 1991 to 2005, and the annual maximum air temperature increased 0.162℃, of which 0.083℃ from 1991 to 2005. All these indicating that the urban expansion in the YRD from 1991 to 2005 may be regarded as a serious climate signal. 相似文献
5.
在结构风工程中, 风湍流统计参数计算的正确与否直接影响到风荷载的计算精度。在实际风参数计算与分析中, 多选用风速较大的样本资料, 但过分强调大风可能产生不合理的计算结果。利用超声风速仪瞬时风速观测资料, 分别划分成相对强风和持续强风样本, 计算并比较其湍流统计特性参数, 发现湍流统计参数特性值 (湍流度、阵风因子、摩擦速度等) 与风速大小并不能很好匹配, 有时风速不大但其湍流特性值却很大, 反之也然。研究表明:选取的湍流风资料样本或统计方法不同, 都会影响风特性参数的计算结果, 进而影响到风荷载计算的精度。这一结果对于提高结构风工程中风参数计算与设计的科学性和合理性具有现实意义。 相似文献
6.
根据地图投影坐标系,经过数学推导,将地图信息要素进行数字化,通过软件程序的实现,解决了大、中比例尺地图信息数字化的关键技术,该方法设计简单,特别适合自行开发专业应用系统时引用。 相似文献
7.
8.
9.
一次暴雨的湿位涡分析及EVAD技术应用 总被引:2,自引:8,他引:2
利用NCEP/NCAR再分析资料和实测资料对2004年6月24-25日的一次江苏暴雨过程进行了分析,并且根据湿位涡守恒原理和倾斜涡度发展理论,对这次暴雨过程中的湿位涡进行了诊断分析,结果表明:此次暴雨由中尺度低涡、切变线直接触发产生;西南低空急流的稳定维持为这次暴雨的发生提供了重要的水汽条件;当负湿位涡向上的扰动高度增加、强度增强,高低空正负湿位涡区配合较好时常会出现强降水.另外,利用EVAD技术由多普勒雷达基数据定量计算了这次过程的平均散度场,通过分析其演变情况,发现:低层散度场由辐散逐渐向辐合过渡、高层散度场由辐合逐渐向辐散过渡时,预示着强降水将要发生,如果出现相反的变化趋势,则降水减弱或停止;低层由辐散向辐合、高层由辐合向辐散的转折出现时间早于强降水出现的时间,对强降水产生有预示作用,对预报员准确作出短时临近预报预警具有重要实际应用价值. 相似文献
10.
降水时空变化对中国南方强酸雨分布的影响 总被引:7,自引:0,他引:7
利用SCIAMACHY、GOME 卫星资料反演的SO2、NO2 柱浓度和中国重点城市SO2 排 放量数据分析了中国酸雨前体物时空分布特征, 并结合气象观测资料探讨了在降水分布出现 气候学时空尺度调整的背景下, 降水长期变化对强酸雨分布的影响。结果表明: (1) 中国南方 地区NO2、SO2 排放量相对于降水的冲刷能力而言仍然处于较高的水平, 为强酸雨的形成提 供了充足的污染物条件。(2) 1993-2004 年间, 以1999 年为转折期, 中国南方强酸雨分布形势 经历了一个由强到弱到再次增强的过程。1999 年后, 西南强酸雨区强酸雨城市比例持续下 降, 江南强酸雨区强酸雨城市比例迅速增加, 强酸雨东移扩大趋势明显。(3) 中国南方强酸雨 区的空间分布与1961-2006 年冬夏季降水量线性增减速率超过10 mm/10a 的地区一致。以季 节降水量线性增减速率超过10 mm/10a 为界, 将江南及西南强酸雨区各季节降水量做线性趋 势和突变分析, 发现江南地区冬夏季降水量在1999 年出现增减趋势转换, 与强酸雨城市比例 转折的时间一致。其中, 1991-1999 年江南强酸雨区冬季降水减少, 夏季暴雨显著增加, 有利 于酸雨缓解, 强酸雨范围缩小; 而2000-2006 年, 冬季降水处于偏多时期, 夏季降水却相对 偏少, 强酸雨覆盖范围扩大。西南强酸雨区春秋季降水量在1990 年后持续减少, 导致春秋季 降水占年降水量比例下降, 使得年降水pH 值升高, 强酸雨形势得到缓解。 相似文献