排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
利用逐日气温和降水量数据、NCEP/NCAR再分析资料以及预报场资料,通过分析提取我国南方区域持续性低温雨雪过程及其预报因子,使用粒子群-神经网络方法建立非线性的统计集合预报模型 (PSONN-EPM),对我国南方区域持续性低温雨雪过程进行预报试验。结果表明:以过程的冷湿程度及影响范围为标准,将低温雨雪过程分为一般过程和严重过程,并建立不同的预报模型效果较好。通过10 d独立样本预报试验看,基于粒子群-神经网络方法建立的集合预报模型比基于逐步回归方法建立的预报模型的预报平均相对误差小,对严重过程预报能力高于对一般过程预报,且这种非线性统计集合建模方法在建模过程中不需要调整神经网络参数,在实际预报业务中值得尝试。 相似文献
2.
3.
基于最大相关最小冗余度算法和随机森林回归算法,该文提出一种对欧洲中期天气预报中心(ECMWF)集合预报产品进行暴雨预报的释用方法。该方法采用最大相关最小冗余度算法,对ECMWF集合预报的51个成员进行筛选,选取若干个与预报对象相关性最大、相互间冗余度最小的成员作为随机森林回归算法的输入因子。利用ECMWF集合预报降水量平均值对建模样本进行分类,使预报模型的建模样本更具有针对性。通过2012年4月—2015年12月的交叉独立样本试验预报和2016年1—9月的业务预报试验的统计结果表明:该释用方法的暴雨预报TS和ETS评分,均比采用ECMWF集合预报产品51个成员降水量预报进行插值后取平均值的释用方法分别提高了0.07和0.05以上,显示了较好的数值预报产品释用效果。 相似文献
4.
为了更好地利用大量的卫星云图观测资料来提高台风暴雨的预报能力,解决并提高对台风强降水云系变化的预报精度,延长对未来云系变化的预报时效,构建基于合作对策Shapley-模糊神经网络的华南区域台风卫星云图非线性智能计算滚动集合预测模型,对增强卫星云图资料在台风暴雨天气预报中的实用性和及时性具有重要意义。依据2013—2016年华南区域台风影响过程的卫星云图,采用类似于数值预报模式的集合预报方法,通过对间隔6 h的卫星云图云顶亮温样本序列做经验正交函数分解,将提取出的时间系数作为云图预报建模的预报分量。考虑台风云系的发展变化主要受云团环境物理量场的影响,利用数值预报模式的物理量预报产品作为各预报分量的预报因子,并采用k-近邻互信息估计的分步式变量选择算法,通过两步过程实现相关变量的选择与弱相关变量的剔除,分别建立相应时间系数的Shapley-模糊神经网络集合预报模型,进一步将预报得到的各时间系数与空间向量合成,重构得到未来时刻的卫星云图预报图,实现了云图6—72 h的长时效客观滚动预测。试验结果表明,新方案所预测的云图与实况云图相关较高,重构云图的基本轮廓、纹理特征分布、清晰度以及云系强弱方面都比较接近原始云图。另外,研究进一步基于相同的云图预报因子,针对同样的建模和预报样本采用多元线性回归方案进行和新方案一致的云图预测。对比结果表明,这种非线性预报模型比线性方案能更好地预报未来较长时效台风云团的发展、移动的主要特征和变化趋势,其预测的云图与实际云图的主要特征更相似。云图预报时效达到了72 h,具有业务实用价值。 相似文献
5.
6.
针对传统方法采用天气雷达进行强降水的定量估测存在较大偏差问题,论文以1 h累计雨量为估测对象,基于雷达组网拼图资料,采用XGBoost(eXtreme Gradient Boosting)算法,建立新的雷达估测降水模型。该模型设计以前1 h的雷达组合反射率因子作为输入,进一步采用若干个剔除异常样本的策略有效清除建模样本中的部分噪声,更好地构建了雷达组合反射率与估测对象之间的非线性映射关系。在32万个独立检验样本的估测结果中,其均方根误差(RMSE)为6.04 mm、平均绝对误差(MAE)为3.50 mm、预报偏差(BIAS)为1.05;与目前业务系统上使用的ZR(300,1.4)关系方法相比,前者的RMSE和MAE分别下降了20.6%和10.3%,而BIAS指标则显示后者对降水量级的估测明显低估。进一步对小时雨强大于10 mm样本的统计结果表明,新方案的RMSE、MAE以及TS评分均大幅优于ZR(300,1.4)关系方法,可进行实际业务应用。 相似文献
7.
为了提高日极大风风速的预报能力,特别是8级以上风力的预报,本文以欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECWMF)模式输出的过去3 h阵风风速预报作为输入因子,同时针对ECWMF模式过去3 h阵风风速预报存在的小量级风预报偏大、大量级风预报偏小的预报特征,利用近5年地面观测实况以及ECWMF模式过去3 h阵风资料,构建基于Tabnet的日极大风分级订正预报模型。其中,模型的输入设计包含了前期实况、站点的地理信息、ECWMF模式的预报场及其前期预报误差项。该模型在1年半独立检验样本的估测结果中,其预报模型的平均绝对误差相对ECWMF模式插值降低了45.2%,相应的均方根误差也减少了25.7%。进一步地,在1~5级和8~9级以上风力等级的预报上,该预报模型的预报准确率较利用ECWMF模式预报场插值得到的预报方法均有明显提高,表明该预报方法的可行性。 相似文献
8.
9.
采用偏最小二乘回归建立了前汛期(4-6月)月降水量的预测模型,其中模型的输入因子是通过对3个前期月平均物理量场(海温场、500 hPa温度场和200 hPa高度场)大量的场相关因子采用系统降维的处理方法获得.为实现同时对多个站点的月降水量预测,将多站点的月降水量预测转换成多站点气候场的主分量预测,进一步利用气候场特征向量的近似不变性进行回算,从而得到多站点的逐站月降水量预测结果.对广西37个基本站的前汛期月降水量进行了6年独立样本检验,其预报结果显示该模型具有较好的预报能力. 相似文献
1