全文获取类型
收费全文 | 72篇 |
免费 | 28篇 |
国内免费 | 20篇 |
专业分类
大气科学 | 114篇 |
地球物理 | 1篇 |
综合类 | 4篇 |
自然地理 | 1篇 |
出版年
2024年 | 1篇 |
2023年 | 1篇 |
2022年 | 3篇 |
2021年 | 1篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2018年 | 4篇 |
2017年 | 4篇 |
2016年 | 4篇 |
2015年 | 5篇 |
2014年 | 6篇 |
2013年 | 7篇 |
2012年 | 9篇 |
2011年 | 11篇 |
2010年 | 8篇 |
2009年 | 10篇 |
2008年 | 8篇 |
2007年 | 2篇 |
2006年 | 1篇 |
2005年 | 3篇 |
2004年 | 6篇 |
2003年 | 6篇 |
2002年 | 7篇 |
2001年 | 4篇 |
2000年 | 3篇 |
1999年 | 2篇 |
排序方式: 共有120条查询结果,搜索用时 15 毫秒
1.
太平洋混合层厚度(dml)年际异常的初步分析 总被引:1,自引:0,他引:1
用太平洋区域30a逐月混合层厚度(dml)及浅层海温(Ts)距平资料,分析了20°S以北太平洋区域dml年际变率的地理分布和季节变化,得到两个纬向dml高变率带,它们分别位于北太平洋(45°N附近)和赤道中、西太平洋.重点分析了赤道太平洋dml高变率带,并对其上混合层气候位置、dml年际异常与El Nino事件关系及伴随强El Nino事件的dml正异常东传等作了初步分析. 相似文献
2.
东北夏季(6-8月)气温异常的时空特征分析 总被引:5,自引:0,他引:5
利用夏季(6—8月)中国东北地区91站44a气温资料,采用谐波分析方法将该区夏季气温异常变化的年代际、年际尺度分量分离,研究时空特征,然后应用REOF进行气温异常的区划,研究局域异常变化的年代际、年际分量的变化特征。结果发现:1)东北各站夏季异常方差中,东北大部分地区的气温异常的年代际变化分量均明显大于年际变化分量。2)区域气温异常的年代际变化主要特征为线性上升趋势。大范围夏季异常高温(低温)常出现在年代际、年际异常同时为正(负)的年份。3)气温异常可划分为南部型、北部型、东部型、西部型4个型,其中南部型和西部型的年代际变化相对重要,而东部型和北部型的年际变化相对重要。 相似文献
3.
热带西太平洋热状况年代际和年际变化特征分析 总被引:3,自引:0,他引:3
采用谐波分析和EOF分析方法,对比研究了暖池区域表层热状况(海表温度距平SST'表征)和浅层热状况(热含量距平HS'和次表层海温距平ST'表征)在1月和7月的年代际、年际尺度时空特征.分析结果表明:⑴不同季节的年代际、年际尺度SST'和HS'都存在两个显著模态,HS'1月的年代际、年际尺度结构最简单,而SST'7月的年代际和1月年际结构最复杂;⑵ 1970年代末和1980年代初发生的年代际跃变HS'晚于SST', 且SST'(HS')呈增温(减少)趋势;⑶ HS'的年际异常与ENSO关系密切,而SST'与ENSO关系不显著. 相似文献
4.
利用1980-2017年国家气象信息中心提供的2481站逐日气温和NCEP/NCAR逐日再分析资料,对比研究了大气低频振荡对中国冬季三类(即:全国类、东北类和东部类)大范围持续性低温事件(以下简称事件)的影响差异。结果表明:20世纪80-90年代初和21世纪00年代后期以来事件偏多,冬季温度均具10~30天显著周期。通过对对流层大气环流场分析发现,在低层三类事件主要受低频西伯利亚高压(Siberian high,SH)影响,SH在全国类最强,东北类最弱;SH范围在全国类最大,南边界可达长江以南,在东北类和东部类中偏东。此外偏西的低频阿留申低压也是影响东北类事件的主要低频系统之一。在中层,全国类和东部类事件均有低频横槽转竖并和东亚大槽合并的过程,横槽在全国类中纬向尺度更大,东北类主要受东北冷涡度的影响。在高层,在全国类事件中温带急流整体持续偏弱,副热带急流整体持续偏强;东北类温带急流西强东弱,副热带急流西弱东强;东部类中温带急流整体持续偏弱,且偏弱程度大于全国类,副热带急流西强东弱。要分别关注低频500 hPa高度场上-12天(全国类)、-9天(东北类)和-10天(东部类)的西部预测信号... 相似文献
5.
6.
夏季平流层盛行强东风,Rossby波能量难以从对流层向上传播至平流层,而冬季平流层盛行西风,Rossby波能量容易上传,因此以往对Rossby波能量向平流层传播的研究多考虑冬季的情况.而事实上,因为夏季高原上空南亚高压反气旋环流,并非只有强东风存在,所以Rossby波能量也可能在南亚高压区向上传播,从而影响平流层的温度、风场及大气成分等.因此,本文利用ERA-interim逐日再分析资料,分析了1979-2015年夏季南亚高压区Rossby波能量穿越对流层顶传播的特征与机制.结果表明:Rossby波能量可以从南亚高压西北部的窗口区上传至平流层,最高可到达平流层顶,而在南亚高压的其他部分,Rossby波能量均不能穿越对流层顶上传或穿越对流层顶后无法继续上传.南亚高压西北区Rossby波能量可以穿越对流层顶传播的原因是盛行西风,且西风急流出现的频率很小,同时涡动热量通量异常引起的垂直分量的第一项对其上传有很大贡献.南亚高压东北区也盛行西风,然而Rossby波能量不能向上穿越对流层顶的原因是强西风出现频率较高,且温度脊与高度脊位相相近,不利于上传.南亚高压南部均盛行东风,在平流层中下层均为稳定层结,因此Rossby波能量很难上传.南亚高压西南区在对流层位于青藏高原环流的伊朗高原下沉区附近,层结稳定,并且温度脊超前于高度脊,所以Rossby波能量很难上传.而南亚高压东南区在对流层位于南海-西太平洋热带幅合带,层结不稳定,存在Rossby波能量较弱的上传,达到对流层顶后无法继续上传,该区域温度脊落后于高度脊的温压场配置也为Rossby波能量在对流层内的传播提供了条件.
相似文献7.
利用1961年1月—2014年12月Hadley气候预测研究中心的全球海表温度(SST)资料,NECP/NCAR逐日风场、比湿等再分析资料,国家气象信息中心提供的中国753站逐日降水、160站逐月降水资料,对比分析了东部(EP)型和中部(CP)型两类El Niňo事件次年夏季长江-黄河流域降水(简记为EP型和CP型降水)低频特征,以及与之相关的低频水汽输送差异。结果表明,1)平均而言,EP型降水主要有10~20 d(最显著)以及20~30 d(次显著)低频周期;CP型降水主要有10~20 d的低频显著周期。与之相关的纬、经向水汽通量最显著低频周期也为10~20 d。2)影响EP、CP型低频降水共同的低频水汽环流系统主要有:菲律宾群岛附近的异常反气旋式水汽环流和渤海湾附近(日本东南侧)的异常气旋式(反气旋式)水汽环流。另外,影响EP(CP)型低频降水的还有来自巴尔喀什湖东北部异常气旋式水汽环流(孟加拉湾、苏门答腊岛以西的异常气旋式水汽环流对和贝加尔湖西、东两侧的异常气旋式、反气旋式环流)。3)EP型降水暖湿水汽主要源自南海,冷湿水汽主要源自西北太平洋,冷空气来自巴尔喀什湖东北部和贝加尔湖西北侧。CP型降水暖湿水汽少量来自阿拉伯海和印度洋,大量来自热带西太平洋,冷空气主要来自贝加尔湖西北侧。 相似文献
8.
利用1981—2013年中国160站逐月降水资料、NCEP/NCAR逐月再分析资料及NOAA海表温度资料,研究了华南前汛期降水年代际异常的时空特征及其可能成因。结果表明:1)华南前汛期降水在1992前后发生由异常偏少转为偏多的显著年代际转折,最显著异常中心位于广西东北部和广东北部。2)1990年代初发生的对流层高层南冷北暖(40°N附近为界)、对流层下暖上冷的年代际转折,使得高低层环流场均出现了有利于北方干、湿冷空气和孟加拉湾、西太平洋暖湿水汽在华南区域交汇并辐合上升的形势,造成华南前汛期降水发生偏少转偏多的显著年代际转折。年代际转折的前后两个时段中,位于热带的孟加拉湾槽、东亚沿岸EAP遥相关型波列中的西太平洋副高、阿拉斯加湾附近的脊,以及中纬度贝加尔湖以西以南脊的强度或位置均具有显著差异,故这些环流系统的年代际异常是华南前汛期降水年代际异常的重要原因。3)南太平洋关键区海温在1990年代初开始呈现增暖趋势,在偏暖(偏冷)时期,华南低空受异常气旋(异常反气旋)环流控制,对流层上层西风急流偏弱偏南(偏强偏北),造成华南地区降水异常偏多(偏少)。 相似文献
9.
利用国家气象信息中心提供的1961—2010年华南85站逐日降水及NCEP/NCAR逐日再分析资料,选取2004、2010年为华南前汛期降水典型旱、涝年,分别统计旱涝年降水及冷空气低频特征,讨论低频冷空气与低频降水的关系,并揭示低频冷空气信号源地。结果表明:(1)涝年降水存在10~20 d和30~60 d显著低频周期,旱年还存在20~30 d低频周期。无论旱涝年,低频位涡与同频域降水呈显著的正相关关系,其中10~20 d低频位涡与同频域降水的关系最为密切;(2)涝年华南前汛期10~20 d低频冷空气直接源地位于华北至渤海一带,南传特征明显,高层冷空气源地位于平流层低层西西伯利亚地区,高层高位涡空气沿315 K等熵面向低层输送,干侵入为西北路径。旱年对流层低层冷空气传播特征不明显,高层冷空气源地位于平流层低层东北地区,由于高低层位涡传输通道断裂,导致冷空气活动减弱,降水减少,干侵入为东北路径。 相似文献
10.
1概况众所周知,目前可以从大量分散的气象数据服务中心获取卫星和站点观测资料,以及模式资料,但是对资料的检索、访问和处理要耗费很多的时间和精力。为此,南京信息工程大学大气资料服务中心(NADSC)和NASA(National Aeronautics and Space Administration)戈达德地球科学数据和信息服务中心(GES DISC,Goddard Earth Sciences Data and Information Services Center)开展了国际合作研究, 相似文献