首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24031篇
  免费   4618篇
  国内免费   6035篇
测绘学   1101篇
大气科学   2318篇
地球物理   6582篇
地质学   14866篇
海洋学   3370篇
天文学   170篇
综合类   1567篇
自然地理   4710篇
  2024年   124篇
  2023年   285篇
  2022年   723篇
  2021年   1005篇
  2020年   1040篇
  2019年   1216篇
  2018年   1046篇
  2017年   1001篇
  2016年   1068篇
  2015年   1208篇
  2014年   1547篇
  2013年   1867篇
  2012年   1504篇
  2011年   1683篇
  2010年   1539篇
  2009年   1607篇
  2008年   1616篇
  2007年   1726篇
  2006年   1815篇
  2005年   1442篇
  2004年   1372篇
  2003年   1193篇
  2002年   1095篇
  2001年   906篇
  2000年   791篇
  1999年   697篇
  1998年   617篇
  1997年   549篇
  1996年   472篇
  1995年   386篇
  1994年   355篇
  1993年   280篇
  1992年   224篇
  1991年   173篇
  1990年   108篇
  1989年   126篇
  1988年   70篇
  1987年   56篇
  1986年   33篇
  1985年   34篇
  1984年   20篇
  1983年   17篇
  1982年   6篇
  1981年   13篇
  1980年   8篇
  1979年   2篇
  1978年   11篇
  1973年   3篇
  1971年   3篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
991.
There have been significant recent advances in understanding the ecohydrology of deep soil. However, the links between root development and water usage in the deep critical zone remains poorly understood. To clarify the interaction between water use and root development in deep soil, we investigated soil water and root profiles beyond maximum rooting depth in five apple orchards planted on farmland with stand ages of 8, 11, 15, 18, and 22 years in a subhumid region on the Chinese Loess Plateau. Apple trees rooted progressively deeper for water with increasing stand age and reached 23.2 ± 0.8 m for the 22‐year‐old trees. Soil water deficit in deep soil increased with tree age and was 1,530 ± 43 mm for a stand age of 22 years. Measured root deepening rate was far great than the reported pore water velocity, which demonstrated that trees are mining resident old water. The deficits are not replenished during the life‐span of the orchard, showing a one‐way mining of the critical zone water. The one‐way root water mining may have changed the fine root profile from an exponential pattern in the 8‐year‐old orchard to a relative uniform distribution in older orchards. Our findings enhance our understanding of water‐root interaction in deep soil and reveal the unintended consequences of critical zone dewatering during the lifespan of apple trees.  相似文献   
992.
The root‐zone moisture replenishment mechanisms are key unknowns required to understand soil hydrological processes and water sources used by plants. Temporal patterns of root‐zone moisture replenishment reflect wetting events that contribute to plant growth and survival and to catchment water yield. In this study, stable oxygen and hydrogen isotopes of twigs and throughfall were continuously monitored to characterize the seasonal variations of the root‐zone moisture replenishment in a native vegetated catchment under Mediterranean climate in South Australia. The two studied hillslopes (the north‐facing slope [NFS] and the south‐facing slope [SFS]) had different environmental conditions with opposite aspects. The twig and throughfall samples were collected every ~20 days over 1 year on both hillslopes. The root‐zone moisture replenishment, defined as percentage of newly replenished root‐zone moisture as a complement to antecedent moisture for plant use, calculated by an isotope balance model, was about zero (±25% for the NFS and ± 15% for the SFS) at the end of the wet season (October), increased to almost 100% (±26% for the NFS and ± 29% for the SFS) after the dry season (April and May), then decreased close to zero (±24% for the NFS and ± 28% for the SFS) in the middle of the following wet season (August). This seasonal pattern of root‐zone moisture replenishment suggests that the very first rainfall events of the wet season were significant for soil moisture replenishment and supported the plants over wet and subsequent dry seasons, and that NFS completed replenishment over a longer time than SFS in the wet season and depleted the root zone moisture quicker in the dry season. The stable oxygen isotope composition of the intraevent samples and twigs further confirms that rain water in the late wet season contributed little to root‐zone moisture. This study highlights the significant role of the very first rain events in the early wet season for ecosystem and provides insights to understanding ecohydrological separation, catchment water yield, and vegetation response to climate changes.  相似文献   
993.
Maize growth has great effects on soil properties and thus likely induces the changes in soil erosion resistance on sloping farmland. However, temporal variation of soil erosion resistance during the growth stages of maize is still unclear in the mountainous yellow soil area where maize is the dominant crop. In this study, four maize plots (MP) and four bare land plots (CK) were conducted to investigate soil erosion resistance, and multiple indicators of soil erosion resistance were measured including the total soil anti-scourability (TAS), mean weight diameter (MWD), soil erodibility K factor and soil shear strength (SH). A comprehensive soil erosion resistance index (CSERI) was employed to quantify the temporal variation of soil erosion resistance during the growth stages of maize (seedling stage, SS; jointing stage, JS; tasselling stage, TS; maturing stage, MS). The results showed that TAS, MWD, SH increased significantly with maize growth and SH decreased when at MS. But K factor decreased significantly over time. CSERI increased significantly during the growth stages of maize and the CSERI of JS, TS, MS increased on average by 74.72, 180.68 and 234.57% than that of SS. Compared to CK, CSERI of MP increased by 49.90, 66.82, 55.60 and 38.61% during the growth stages of maize. The temporal variation of soil erosion resistance was closely related to the changes in maize cover, maize roots and soil organic carbon. The findings demonstrated that it is necessary to consider the temporal variation of soil erosion resistance in the mountainous yellow soil area.  相似文献   
994.
Many studies have investigated the exchange processes that occur between rivers and groundwater systems and have successfully quantified the water fluxes involved. Specifically, these exchange processes include hyporheic exchange, river–aquifer exchange (groundwater discharge and river loss) and bank storage exchange. Remarkably, there are relatively few examples of field studies where more than one exchange process is quantified, and as a consequence, the relationships between them are not well understood. To compare the relative magnitudes of these common exchange processes, we have collected data from 54 studies that have quantified one or more of these exchange flux types. Each flux value is plotted against river discharge at the time of measurement to allow the different exchange flux types to be compared. We show that there are positive relationships between the magnitude of each exchange flux type and increasing river discharge across the different studies. For every one order of magnitude increase in river discharge, the hyporheic, river–aquifer and bank storage exchange fluxes increase by factors of 2.7, 2.9 and 2.5, respectively. On average, hyporheic exchange fluxes are almost an order of magnitude greater than river–aquifer exchange fluxes, which are, in turn, approximately four times greater than bank storage exchange fluxes for the same river discharge. Unless measurement approaches that can distinguish between different types of exchange flux are used, there is potential for hyporheic exchange fluxes to be misinterpreted as river–aquifer exchange fluxes, with possible implications for water resource management decisions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
995.
Gravel road surfaces can be a major source of fine sediment to streams, yet their contribution to channel reach sediment balances remains poorly documented. To quantify the input of road surface material and to compare this input with natural sediment sources at the reach scale, suspended sediment dynamics was examined and a 16‐month sediment balance was developed for a ~35 channel‐width (approx. 425 m) reach of the Honna River, a medium‐size, road‐affected stream located in coastal British Columbia. Of the 105 ± 33 t of suspended material passing through the reach, 18 ± 6% was attributed to the road surface. The high availability of sediment on the road surface appears to limit hysteresis in road run‐off. During rainstorms that increase streamflow, road surface material composed 0.5–15% of sediment inputs during relatively dry conditions from April to the end of September and 5–70% through wetter conditions from October to the end of March, but our data do not show evidence of major sediment accumulation on the riverbed in the reach. A comparison of modelled sediment production on the road surface with observed yields from drainage channels suggests that (1) during low intensity rainfall, ditches and drainage channels may trap sediment from road run‐off, which is subsequently released during events of greater intensity, and/or (2) production models do not effectively describe processes, such as deposition or erosion of sediment in ditches, which control sediment transport and delivery. Our findings further emphasize the risk of unpaved roads in polluting river systems and highlight the continued need for careful road design and location away from sensitive aquatic environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
996.
Diffusive mass exchange into immobile water regions within heterogeneous porous aquifers influences the fate of solutes. The percentage of immobile water is often unidentified in natural aquifers though. Hence, the mathematical prediction of solute transport in such heterogeneous aquifers remains challenging. The objective of this study was to find a simple analytical model approach that allows quantifying properties of mobile and immobile water regions and the portion of immobile water in a porous system. Therefore, the Single Fissure Dispersion Model (SFDM), which takes into account diffusive mass exchange between mobile and immobile water zones, was applied to model transport in well‐defined saturated dual‐porosity column experiments. Direct and indirect model validation was performed by running experiments at different flow velocities and using conservative tracer with different molecular diffusion coefficients. In another column setup, immobile water regions were randomly distributed to test the model applicability and to determine the portion of immobile water. In all setups, the tracer concentration curves showed differences in normalized maximum peak concentration, tailing and mass recovery according to their diffusion coefficients. These findings were more pronounced at lower flow rates (larger flow times) indicating the dependency of diffusive mass exchange into immobile water regions on tracers' molecular diffusion coefficients. The SFDM simulated all data with high model efficiency. Successful model validation supported the physical meaning of fitted model parameters. This study showed that the SFDM, developed for fissured aquifers, is applicable in porous media and can be used to determine porosity and volume of regions with immobile water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
997.
This paper deals with the numerical implementation of a cap model for unsaturated soils. It provides a brief review of existing cap model approaches, based on which an improved model formulated in terms of generalised effective stress and matric suction is derived and described in detail. Although the proposed model is a multisurface plasticity model, it can efficiently be implemented using only single‐surface projections because of the smoothness of the model, which is obtained by construction. Numerical algorithms are provided for these single‐surface stress projections, using a single‐equation approach whenever possible. The robustness of the utilised single‐equation approaches is enhanced by proposing problem‐fitted start‐up procedures based on investigations of the nonlinear projection equations. A comparison of the model response with extensive material test data is used to validate the model and to demonstrate the robust application of the approach to silty sands and low to medium plasticity clays. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
998.
Daniel Caissie 《水文研究》2016,30(12):1872-1883
Stream temperature plays an important role in many biotic and abiotic processes, as it influences many physical, chemical and biological properties in rivers. As such, a good understanding of the thermal regime of rivers is essential for effective fisheries management and the protection aquatic habitats. Moreover, a thorough understanding of underlying physical processes and river heat fluxes is essential in the development of better and more adaptive water temperature models. Very few studies have measured river evaporation and condensation and subsequently calculated corresponding heat fluxes in small tributary streams, mainly because microclimate data (data collected within the stream environment) are essential and rarely available. As such, the present study will address these issues by measuring river evaporation and condensation in tributary 1 (Trib 1, a small tributary within Catamaran Brook) using floating minipans. The latent heat flux and other important fluxes were calculated. Results showed that evaporation was low within the small Trib 1 of Catamaran Brook, less than 0.07 mm day?1. Results showed that condensation played an important role in the latent heat flux. In fact, condensation was present during 34 of 92 days (37%) during the summer, which occurred when air temperature was greater than water temperature by 4–6 °C. Heat fluxes within this small stream showed that solar radiation dominated the heat gains and long‐wave radiation dominated the heat losses. © 2015 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2015 John Wiley & Sons, Ltd.  相似文献   
999.
Understanding hydrological processes in wetlands may be complicated by management practices and complex groundwater/surface water interactions. This is especially true for wetlands underlain by permeable geology, such as chalk. In this study, the physically based, distributed model MIKE SHE is used to simulate hydrological processes at the Centre for Ecology and Hydrology River Lambourn Observatory, Boxford, Berkshire, UK. This comprises a 10‐ha lowland, chalk valley bottom, riparian wetland designated for its conservation value and scientific interest. Channel management and a compound geology exert important, but to date not completely understood, influences upon hydrological conditions. Model calibration and validation were based upon comparisons of observed and simulated groundwater heads and channel stages over an equally split 20‐month period. Model results are generally consistent with field observations and include short‐term responses to events as well as longer‐term seasonal trends. An intrinsic difficulty in representing compressible, anisotropic soils limited otherwise excellent performance in some areas. Hydrological processes in the wetland are dominated by the interaction between groundwater and surface water. Channel stage provides head boundaries for broad water levels across the wetland, whilst areas of groundwater upwelling control discrete head elevations. A relic surface drainage network confines flooding extents and routes seepage to the main channels. In‐channel macrophyte growth and its management have an acute effect on water levels and the proportional contribution of groundwater and surface water. The implications of model results for management of conservation species and their associated habitats are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
1000.
Elevated turbidity (Tn) and suspended sediment concentrations (SSC) during and following flood events can degrade water supply quality and aquatic ecosystem integrity. Streams draining glacially conditioned mountainous terrain, such as those in the Catskill Mountains of New York State, are particularly susceptible to high levels of Tn and SSC sourced from erosional contact with glacial-related sediment. This study forwards a novel approach to evaluate the effectiveness of stream restoration best management practices (BMPs) meant to reduce stream Tn and SSC, and demonstrates the approach within the Stony Clove sub-basin of the Catskills, a water supply source for New York City. The proposed approach is designed to isolate BMP effects from natural trends in Tn and SSC caused by trends in discharge and shifts in average Tn or SSC per unit discharge (Q) following large flood events. We develop Dynamic Linear Models (DLMs) to quantify how Tn-Q and SSC-Q relationships change over time at monitoring stations upstream and downstream of BMPs within the Stony Clove and in three other sub-basins without BMPs, providing observational evidence of BMP effectiveness. A process-based model, the River Erosion Model, is then developed to simulate natural, hydrology-driven SSC-Q dynamics in the Stony Clove sub-basin (absent of BMP effects). We use DLMs to compare the modelled and observed SSC-Q dynamics and isolate the influence of the BMPs. Results suggest that observed reductions in SSC and Tn in the Stony Clove sub-basin have been driven by a combination of declining streamflow and the installed BMPs, confirming the utility of the BMPs for the monitored hydrologic conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号