首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1137篇
  免费   125篇
  国内免费   107篇
测绘学   6篇
大气科学   6篇
地球物理   606篇
地质学   378篇
海洋学   42篇
天文学   13篇
综合类   21篇
自然地理   297篇
  2023年   2篇
  2022年   18篇
  2021年   20篇
  2020年   23篇
  2019年   17篇
  2018年   15篇
  2017年   20篇
  2016年   12篇
  2015年   14篇
  2014年   33篇
  2013年   28篇
  2012年   23篇
  2011年   33篇
  2010年   13篇
  2009年   78篇
  2008年   165篇
  2007年   89篇
  2006年   99篇
  2005年   91篇
  2004年   66篇
  2003年   59篇
  2002年   45篇
  2001年   29篇
  2000年   69篇
  1999年   53篇
  1998年   49篇
  1997年   37篇
  1996年   42篇
  1995年   19篇
  1994年   19篇
  1993年   19篇
  1992年   11篇
  1991年   9篇
  1990年   8篇
  1989年   10篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1985年   5篇
  1984年   1篇
  1983年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1954年   1篇
排序方式: 共有1369条查询结果,搜索用时 15 毫秒
51.
In this paper we present densely sampled fumarole temperature data, recorded continuously at a high-temperature fumarole of Mt. Merapi volcano (Indonesia). These temperature time series are correlated with continuous records of rainfall and seismic waveform data collected at the Indonesian–German multi-parameter monitoring network. The correlation analysis of fumarole temperature and precipitation data shows a clear influence of tropical rain events on fumarole temperature. In addition, there is some evidence that rainfall may influence seismicity rates, indicating interaction of meteoric water with the volcanic system. Knowledge about such interactions is important, as lava dome instabilities caused by heavy-precipitation events may result in pyroclastic flows. Apart from the strong external influences on fumarole temperature and seismicity rate, which may conceal smaller signals caused by volcanic degassing processes, the analysis of fumarole temperature and seismic data indicates a statistically significant correlation between a certain type of seismic activity and an increase in fumarole temperature. This certain type of seismic activity consists of a seismic cluster of several high-frequency transients and an ultra-long-period signal (<0.002 Hz), which are best observed using a broadband seismometer deployed at a distance of 600 m from the active lava dome. The corresponding change in fumarole temperature starts a few minutes after the ultra-long-period signal and simultaneously with the high-frequency seismic cluster. The change in fumarole temperature, an increase of 5 °C on average, resembles a smoothed step. Fifty-four occurrences of simultaneous high-frequency seismic cluster, ultra-long period signal and increase of fumarole temperature have been identified in the data set from August 2000 to January 2001. The observed signals appear to correspond to degassing processes in the summit region of Mt. Merapi.  相似文献   
52.
A bathymetric survey of Kawah Ijen crater lake was conducted by acoustic sounding in 1996 to compare the lake morphology with those measured in 1922, 1925 and 1938, and to calculate the present lake volume. Even though the lake experienced several hydrothermal eruptions, the maximum depth became shallower (182 m) than before (200 m), resulting in a reduced lake volume (3.0×107 m3).Fifty-two major and minor constituents including rare earth elements and polythionates (PT) of the lake waters at various depths were determined by ICP-AES, ICP-MS and HPLC, respectively. These ions except for several volatile elements are taken up by lake fringe through congruent dissolution of pyroclastics of Kawah Ijen volcano. Most ions are homogeneously distributed throughout the lake, although PT showed a considerable vertical variation. Rare earth elements (REE) in the Kawah Ijen water as well as those from other hyper-acidic crater lakes show distribution patterns likely due to the three rock dissolution (preferential, congruent and residual) types, and their logarithmic concentrations linearly depend upon the pH values of the lake waters.Using the PT degradation kinetics data, production rates of PT, injection rates of SO2 and H2S into the lake were estimated to be 114, 86 and 30 tons/day, respectively. Also travel time of the spring water at the Banyupahit Riverhead from Kawah Ijen was estimated to be 600–1000 days through the consideration of decreasing rates of PT. Molten sulfur stocks containing Sn, Cu, Bi sulfides and Pb-barite exposed on the inner crater slope were presumed to be extinct molten sulfur pools at the former lake bottom. This was strongly supported by the barite precipitation temperature estimated through the consideration of the temperature dependence of Pb-chlorocomplex formation.  相似文献   
53.
It is found by field investigation that the near horizontal top surface of the brown or brick-red hydrothermai alteration zone varies obviously in elevation at different sections of the same layer on the caldera‘s inner wall of Tianchi, with that at the north section near the Tianwen Peak about 110 m higher than that at the south near the Jiangjun Peak in Korea. The top surface of the hydrothermai alteration zone can be taken as key horizon to tectonic movement. The difference indicates that the total uplift height of the NW wall of the Liudaogou-Tianchi-Jingfengshan fault, the principal fault trending NE at Tianchi, is bigger than that of the SE wall ever since the occurrence of hydrothermal alteration. This also explains why the topography in the northwest side of Tianchi is steeper and with more developed river system than in the southeast. The uplifting of the northeastern wall is bigger than that of the southwest along the principal NW-trend fault, namely, the Baishanzhen-Tianchi-Jince fault. It is observed from characters of hydrothermal alteration and the palaeoresiduum, that the recent vertical movement rate along the principal NE-trend fault is larger than that of the principal NW-trend fault. The two faults intersect at Tianchi, dividing the volcano into 4 blocks, with the uplift magnitudes decreasing successively in the order of the north, the west, the east and the south block. The biggest uplift of the north block corresponds well to the shallow magma batch in the north of Tianchi observed by DSS and telluric electromagnetic sounding, and etc. and they may be related with the causes.  相似文献   
54.
长白山天池火山地质学研究的若干进展与灾害分析   总被引:11,自引:0,他引:11  
通过以减轻火山灾害为目的的天池火山锥体顶部地区地质填图工作,发现了天池火山锥体附近不同期次火山泥石流,部分火山泥石流显示的高温定位特征指示了其与千年大喷发的成因联系。这些火山泥石流构成了严重的火山泥石流灾害,天池火山锥体近顶部大型滑坡体的发现则指示了天池火山另一种重要的灾害类型。滑坡体堆积物结构上可分为3种类型。天池火山千年大喷发时不同成分与物性的岩浆混合作用十分发育,指示了天池火山喷发前不同岩浆批的混合与共喷发机理。本文还论述了天池火山近代历史记录喷发物的分布与鉴别特征。  相似文献   
55.
We have carried out seismological observations within the Sea of Marmara (NW Turkey) in order to investigate the seismicity induced after Gölcük–İzmit (Kocaeli) earthquake (Mw 7.4) of August 17, 1999, using ocean bottom seismometers (OBSs). High-resolution hypocenters and focal mechanisms of microearthquakes have been investigated during this Marmara Sea OBS project involving deployment of 10 OBSs within the Çınarcık (eastern Marmara Sea) and Central-Tekirdağ (western Marmara Sea) basins during April–July 2000. Little was known about microearthquake activity and their source mechanisms in the Marmara Sea. We have detected numerous microearthquakes within the main basins of the Sea of Marmara along the imaged strands of the North Anatolian Fault (NAF). We obtained more than 350 well-constrained hypocenters and nine composite focal mechanisms during 70 days of observation. Microseismicity mainly occurred along the Main Marmara Fault (MMF) in the Marmara Sea. There are a few events along the Southern Shelf. Seismic activity along the Main Marmara Fault is quite high, and focal depth distribution was shallower than 20 km along the western part of this fault, and shallower than 15 km along its eastern part. From high-resolution relative relocation studies of some of the microearthquake clusters, we suggest that the western Main Marmara Fault is subvertical and the eastern Main Marmara Fault dips to south at 45°. Composite focal mechanisms show a strike-slip regime on the western Main Marmara Fault and complex faulting (strike-slip and normal faulting) on the eastern Main Marmara Fault.  相似文献   
56.
57.
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号