首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1645篇
  免费   431篇
  国内免费   1050篇
测绘学   41篇
大气科学   1383篇
地球物理   466篇
地质学   316篇
海洋学   496篇
天文学   11篇
综合类   63篇
自然地理   350篇
  2024年   21篇
  2023年   34篇
  2022年   81篇
  2021年   101篇
  2020年   119篇
  2019年   102篇
  2018年   99篇
  2017年   106篇
  2016年   94篇
  2015年   86篇
  2014年   136篇
  2013年   176篇
  2012年   127篇
  2011年   132篇
  2010年   128篇
  2009年   127篇
  2008年   115篇
  2007年   147篇
  2006年   142篇
  2005年   135篇
  2004年   96篇
  2003年   103篇
  2002年   87篇
  2001年   91篇
  2000年   86篇
  1999年   54篇
  1998年   63篇
  1997年   62篇
  1996年   55篇
  1995年   59篇
  1994年   48篇
  1993年   27篇
  1992年   29篇
  1991年   18篇
  1990年   7篇
  1989年   9篇
  1988年   6篇
  1987年   1篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有3126条查询结果,搜索用时 15 毫秒
91.
气候变化对湖库水环境的潜在影响研究进展   总被引:1,自引:3,他引:1  
本文着重归纳气候变化对湖库热力特性、冰期、溶解氧、营养盐、浮游植物和水生植物等方面的影响规律,探讨气候变化对湖库水环境潜在影响的区域差异,讨论现有研究方法的优缺点和发展前景.研究表明,气候变暖对湖库物理过程的影响最为显著;热带草原气候和温带海洋性气候对于气候变暖和降雨变化的响应较其他气候类型突出;气候变化对湖库水环境的影响效果具有两面性.通过分析各气候类型中气候变暖对磷水平的潜在影响差异表明,亚热带季风气候的湖库更可能受气候变暖的影响趋于富营养状态.在今后研究中,建议深入开展各气候类型中区域性气候变化对湖库水环境影响的实例研究.  相似文献   
92.
湖泊生态系统的水鸟监测意义   总被引:2,自引:3,他引:2  
张淑霞  董云仙  夏峰 《湖泊科学》2011,23(2):155-162
水鸟的多样性及其变化趋势是保护水鸟必需的信息,也是其柄息湿地环境质量的指示因子之一.本文综述了水鸟与湖泊生态系统关系的研究成果,认为水鸟的物种多样性与丰富度可以快速反映湖泊的水生植物、鱼类的生物量和湖泊水位、营养状况的变化,集群繁殖的食鱼水鸟可用于湖泊生态系统中持久性有毒化学污染物的生态监测;同时阐述了水鸟通过取食水生...  相似文献   
93.
赤道不稳定波对海气相互作用影响的数值模拟分析   总被引:1,自引:0,他引:1  
赤道不稳定波 (tropical instability waves) 存在于热带东太平洋赤道附近, 通常于每年的春末夏初出现, 以约0.6 m/s速度向西传播, 波周期为20~40天左右, 波长约为1000~2000 km.本文利用一个全球高分辨率海气耦合模式对赤道不稳定波在赤道附近的热量输送进行分析, 表明赤道不稳定波产生指向赤道的热通量, 从而部分抵消了热带东太平洋地区由Ekman辐散和温度平流导致的强冷却效应, 维持热带地区的热量平衡.其对赤道冷舌区的增暖作用可以消除和减弱气候模式中热带东太平洋地区的系统性冷偏差, 能使冷舌的强度和分布得到合理的改善, 对气候模式的改进和发展具有潜在贡献.赤道不稳定波还可以改变赤道海洋上空低层大气层结稳定度, 导致近地层强的风场辐合辐散, 并进一步影响大气混合层的温度、 风场等气象要素.模拟分析结果还表明, 赤道不稳定波对大气强迫产生二次响应, 改变赤道上空逆温层的垂直位移和逆温强度.研究赤道不稳定波对热带海洋气候及其海气相互作用机理的理解具有重要意义.  相似文献   
94.
95.
基于3维GIS的热带气旋路径动态演化模拟方法研究   总被引:1,自引:0,他引:1  
我国是世界上受热带气旋影响最为严重的国家之一,因此研究其机理演变规律将更有利于指导做好防灾减灾工作。本文利用GIS的显示功能,重建和再现热带气旋的登陆路径全过程,在空间格局上,进行时间维的动态演化模拟,为更好地研究热带气旋的演化机理提供一种实用的分析手段。结果表明,该方法对在时空上了解和认识气旋登陆演化全过程的研究具有一定意义。  相似文献   
96.
Equatorial glacier‐fed streams present unique hydraulic patterns when compared to glacier‐fed observed in temperate regions as the main variability in discharge occurs on a daily basis. To assess how benthic fauna respond to these specific hydraulic conditions, we investigated the relationships between flow regime, hydraulic conditions (boundary Reynolds number, Re*), and macroinvertebrate communities (taxon richness and abundance) in a tropical glacier‐fed stream located in the high Ecuadorian Andes (> 4000 m). Both physical and biotic variables were measured under four discharge conditions (base‐flow and glacial flood pulses of various intensities), at 30 random points, in two sites whose hydraulic conditions were representative to those found in other streams of the study catchment. While daily glacial flood pulses significantly increased hydraulic stress in the benthic habitats (appearance of Re* > 2000), low stress areas still persisted even during extreme flood events (Re* < 500). In contrast to previous research in temperate glacier‐fed streams, taxon richness and abundance were not significantly affected by changes in hydraulic conditions induced by daily glacial flood pulses. However, we found that a few rare taxa, in particular rare ones, preferentially occurred in highly stressed hydraulic habitats. Monte‐Carlo simulations of benthic communities under glacial flood reduction scenarios predicted that taxon richness would be significantly reduced by the loss of high hydraulic stress habitats following glacier shrinking. This pioneer study on the relationship between hydraulic conditions and benthic diversity in an equatorial glacial stream evidenced unknown effects of climate change on singular yet endangered aquatic systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
97.
Salinity and periodic inundation are both known to have a major role in shaping the ecohydrology of mangroves through their controls on water uptake, photosynthesis, stomatal conductance, gas exchanges, and nutrient availability. Salinity, in particular, can be considered one of the main abiotic regulating factors for halophytes and salt‐tolerant species, due to its influence on water use patterns and growth rate. Ecohydrological literature has rarely focused on the effects of salinity on plant transpiration, based on the fact that the terrestrial plants mostly thrive in low‐saline, unsaturated soils where the role of osmotic potential can be considered negligible. However, the effect of salinity cannot be neglected in the case of tidal species like mangroves, which have to cope with hyperosmotic conditions and waterlogging. We introduce here a first‐order ecohydrological model of the soil/plant‐atmosphere continuum of Avicennia marina—also known as gray mangrove—a highly salt‐tolerant pioneer species able to adapt to hyperarid intertidal zones and characterized by unique morphological and ecophysiological traits. The A. marina's soil‐plant‐atmosphere continuum takes explicitly into account the role of water head, osmotic water potential, and water salinity in governing plant water fluxes. A. marina's transpiration is thus modeled as a function of salinity based on a simple parameterization of salt exclusion mechanisms at the root level and a modified Jarvis' expression accounting for the effects of salinity on stomatal conductance. Consistently with previous studies investigating the physiology of mangroves in response to different environmental drivers, our results highlight the major influence of salinity on mangrove transpiration when contrasted with other potential stressors such as waterlogging and water stress.  相似文献   
98.
To investigate the sources of particulate organic matter (POM) and the impact of Three Gorges Dam (TGD), two large lakes and erosion processes on determining the composition and flux of POM in low water discharge periods along the middle and lower Changjiang, suspended particulate samples were collected along the middle and lower reaches of the Changjiang (Yangtze River) in January 2008. Organic geochemistry of bulk sediment (particulate organic carbon, organic carbon to nitrogen molar ratio (C/N), stable carbon isotope (δ13C) and grain size) and biomarker of bulk sediment (lignin phenols) were measured to trace the sources of POM. The range of C/N ratios (6.4–8.9), δ13C (?24.3‰ – ?26.2‰) and lignin phenols concentration Λ8 (0.45 mg/100 mg OC‐2.00 mg/100 mg OC) of POM suggested that POM originated from the mixture of soil, plant tissue and autochthonous organic matter (OM) during the dry season. POM from lakes contained a higher portion of terrestrial OM than the mainstream, which was related to sand mining and hydropower erosion processes. A three end‐member model based on δ13C and Λ8 was performed. The results indicated that soil contributed approximately 50% of OM to the POM, which is the dominant OM source in most stations. POM composition was affected by total suspended matter (TSM) and grain size composition, and the direct OM input from two lakes and channel erosion induced OM. The lower TSM concentration in January 2008 was mainly caused by seasonal variations; the impact from the TGD in the dry season was relatively small. A box model indicated that more than 90% of the terrestrial OM transported by the Changjiang in January 2008 was from the middle and lower drainage basins. Channel erosion induced OM, and contributions from Poyang Lake were the major terrestrial OM sources in the dry season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
99.
Tritium concentrations were measured in a survey of 24 lakes, 15 wetlands, and 133 groundwaters in the oil sands region of northeastern Alberta and compared with both recent precipitation and precipitation sampled during the 1960s tritium peak caused by atmospheric thermonuclear weapons testing. Water samples from lakes included a group of 14 thaw lakes that had higher runoff attributed to melting of permafrost in peat plateaus within their watersheds. While tritium in all lakes was found to be intermediate between recent and 1960s concentrations, the thaw lakes were found to be significantly enriched in tritium compared with other lakes, as were unfrozen wetlands characterized by a thick sequence of low‐hydraulic conductivity peat. The results provide further evidence of different water sources to the thaw lakes and may indicate that melting of modern permafrost in part formed since the 1950s is occurring in these systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
100.
Significant changes have been observed in the hydrology of Central Rift Valley (CRV) lakes in Ethiopia, East Africa as a result of both natural processes and human activities during the past three decades. This study applied an integrated approach (remote sensing, hydrologic modelling, and statistical analysis) to understand the relative effects of natural processes and human activities over a sparsely gauged CRV basin. Lake storage estimates were calculated from a hydrologic model constructed without inputs from human impacts such as water abstraction and compared with satellite‐based (observed) lake storage measurements to characterize the magnitude of human‐induced impacts. A non‐parametric Mann–Kendall test was used to detect the presence of climatic trends (e.g. a decreasing or increasing trends in precipitation), while the Standard Precipitation Index (SPI) analysis was used to assess the long‐term, inter‐annual climate variability within the basin. Results indicate human activities (e.g. abstraction) significantly contributed to the changes in the hydrology of the lakes, while no statistically significant climatic trend was seen in the basin, however inter‐annual natural climate variability, extreme dryness, and prolonged drought has negatively affected the lakes. The relative contributions of natural and human‐induced impacts on the lakes were quantified and evaluated by comparing hydrographs of the CRV lakes. Lake Abiyata has lost ~6.5 m in total lake height between 1985 and 2006, 70% (~4.5 m) of the loss has been attributed to human‐induced causes, whereas the remaining 30% is related to natural climate variability. The relative impact analysis utilized in this study could potentially be used to better plan and create effective water‐management practices in the basin and demonstrates the utility of this integrated methodology for similar studies assessing the relative natural and human‐induced impacts on lakes in data sparse areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号