首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4989篇
  免费   871篇
  国内免费   688篇
测绘学   776篇
大气科学   505篇
地球物理   1906篇
地质学   1488篇
海洋学   531篇
天文学   223篇
综合类   472篇
自然地理   647篇
  2024年   21篇
  2023年   74篇
  2022年   153篇
  2021年   240篇
  2020年   255篇
  2019年   262篇
  2018年   192篇
  2017年   259篇
  2016年   254篇
  2015年   252篇
  2014年   289篇
  2013年   355篇
  2012年   303篇
  2011年   290篇
  2010年   248篇
  2009年   251篇
  2008年   305篇
  2007年   290篇
  2006年   266篇
  2005年   229篇
  2004年   201篇
  2003年   189篇
  2002年   190篇
  2001年   132篇
  2000年   137篇
  1999年   138篇
  1998年   142篇
  1997年   120篇
  1996年   103篇
  1995年   78篇
  1994年   62篇
  1993年   58篇
  1992年   41篇
  1991年   34篇
  1990年   29篇
  1989年   21篇
  1988年   14篇
  1987年   18篇
  1986年   7篇
  1985年   10篇
  1984年   6篇
  1983年   7篇
  1982年   6篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1976年   3篇
  1973年   1篇
  1971年   1篇
  1954年   4篇
排序方式: 共有6548条查询结果,搜索用时 562 毫秒
991.
汪丽  曹小曙  李涛 《地理科学》2021,41(8):1437-1447
以热门旅游城市西安市为研究区域,采集网络游记数据,综合运用社会网络分析和GIS空间分析方法,探讨不同出游时间下的游客流动网络结构及其分异特征,研究发现:① 不同的出游时间约束下,游客旅游出行行为表现出显著的时间异质性。② 基于游客流动的西安市旅游吸引物的节点结构具有显著的等级规模分异特征,随着出游时间的增加,旅游节点等级结构体系呈现出以高等级景点为枢纽的“强强”关联特征,高等级景点的游客集聚功能提升显著。③ 随着出游时间增加,西安市区旅游节点核心?边缘结构越明显,核心区的节点联系强度越大,区位邻近、知名度接近与交通便利是形成景点组团的关键因子。  相似文献   
992.
高速铁路建设对我国省际可达性空间格局的影响   总被引:4,自引:0,他引:4  
以省会城市为网络中的节点,采用加权平均旅行时间指标对我国"四纵四横"高速铁路网及长三角、珠三角和环渤海地区城际客运系统建成前后省际可达性及演变态势进行分析。研究表明,高速铁路建设使东中西地带内、地带间及省区的总体可达性均获得了大幅度提升,可达性中心区的范围沿骨干客运专线向华南、西南和西北地区拓展,圈层状空间格局依然很突出,两极分化趋势在加剧,高速铁路网建设对各地区的空间经济效应还存在很大差异。经过对高速铁路建成前后各省区的地带内、地带间及总体可达性空间格局的对比分析,从客观上论证了高速铁路建设的必要性及加强省际经济联系的重要性。  相似文献   
993.
薛德升  邹小华 《地理学报》2018,73(6):989-1001
世界城市及其网络是近20多年来国际上城市研究的重要方向。现有研究主要反映了发达国家高级生产者服务业企业主导下的世界城市网络,针对中国等新兴经济体经济动力影响下的世界城市网络的研究明显不足。以在全球快速扩展中的中资商业银行为对象,利用改进的链锁网络模型,分析了1978年以来中资商业银行境外扩展的时空变化,及其连接下的世界城市网络的空间结构变迁。结果显示:中资商业银行的全球扩展,强化了中国主要城市与西欧和北美核心金融中心城市、全球的区域性门户城市、以及亚太地区的世界城市之间的联系,对不同阶段全球的世界城市网络的发展产生了日益重要的影响。中国的对外经济、人员以及政府间的联系,是影响中资商业银行全球扩展与世界城市网络格局的主要原因。  相似文献   
994.
The Slumgullion landslide in the San Juan Mountains of southwestern Colorado has been moving for at least the last few hundred years and has multiple ponds on its surface. We have studied eight ponds during 30 trips to the landslide between July 1998 and July 2007. During each trip, we have made observations on the variability in pond locations and water levels, taken ground‐based photographs to document pond water with respect to moving landslide material and vegetation, conducted Global Positioning System surveys of the elevations of water levels and mapped pond sediments on the landslide surface. Additionally, we have used stereo aerial photographs taken in October 1939, October 1940 and July 2000 to measure topographic profiles of the eight pond locations, as well as a longitudinal profile along the approximate centerline of the landslide, to examine topographic changes over a 60‐ to 61‐year period of time. Results from field observations, analyses of photographs, mapping and measurements indicate that all pond locations have remained spatially stationary for 60–300 years while landslide material moves through these locations. Water levels during the observation period were sensitive to changes in the local, spring‐fed, stream network, and to periodic filling of pond locations by sediment from floods, hyperconcentrated flows, mud flows and debris flows. For pond locations to remain stationary, the locations must mimic depressions along the basal surface of the landslide. The existence of such depressions indicates that the topography of the basal landslide surface is irregular. These results suggest that, for translational landslides that have moved distances larger than the dimensions of the largest basal topographic irregularities (about 200 m at Slumgullion), landslide surface morphology can be used as a guide to the morphology of the basal slip surface. Because basal slip surface morphology can affect landslide stability, kinematic models and stability analyses of translational landslides should attempt to incorporate irregular basal surface topography. Additional implications for moving landslides where basal topography controls surface morphology include the following: dateable sediments or organic material from basal layers of stationary ponds will yield ages that are younger than the date of landslide initiation, and it is probable that other landslide surface features such as faults, streams, springs and sinks are also controlled by basal topography. The longitudinal topographic profile indicated that the upper part of the Slumgullion landslide was depleted at a mean vertical lowering rate of 5.6 cm/yr between 1939 and 2000, while the toe advanced at an average rate of 1.5 m/yr during the same period. Therefore, during this 61‐year period, neither the depletion of material at the head of the landslide nor continued growth of the landslide toe has decreased the overall movement rate of the landslide. Continued depletion of the upper part of the landslide, and growth of the toe, should eventually result in stabilization of the landslide. Published in 2008 by John Wiley & Sons, Ltd.  相似文献   
995.
Real‐time hybrid simulation combines experimental testing of physical substructure(s) and numerical simulation of analytical substructure(s), and thus enables the complete structural system to be considered during an experiment. Servo‐hydraulic actuators are typically used to apply the command displacements to the physical substructure(s). Inaccuracy and instability can occur during a real‐time hybrid simulation if the actuator delay due to servo‐hydraulic dynamics is not properly compensated. Inverse compensation is a means to negate actuator delay due to inherent servo‐hydraulic actuator dynamics during a real‐time hybrid simulation. The success of inverse compensation requires the use of a known accurate value for the actuator delay. The actual actuator delay however may not be known before the simulation. An estimation based on previous experience has to be used, possibly leading to inaccurate experimental results. This paper presents a dual compensation scheme to improve the performance of the inverse compensation method when an inaccurately estimated actuator delay is used in the method. The dual compensation scheme modifies the predicted displacement from the inverse compensation procedure using the actuator tracking error. Frequency response analysis shows that the dual compensation scheme enables the inverse compensation method to compensate for actuator delay over a range of frequencies when an inaccurately estimated actuator delay is utilized. Real‐time hybrid simulations of a single‐degree‐of‐freedom system with an elastomeric damper are conducted to experimentally demonstrate the effectiveness of the dual compensation scheme. Exceptional experimental results are shown to be achieved using the dual compensation scheme without the knowledge of the actual actuator delay a priori. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
996.
通过重构用于确定视震源时间函数有效持续时间的判别函数,对提取视震源时间函数的PLD方法进行了改进;利用合成资料和实际资料,验证了改进后PLD方法的可行性和稳定性.将PLD方法应用于2005年克什米尔MW7.6地震及其11个余震的1887条记录,在84个台站处获得了这次地震的视震源时间函数.分别平均从不同台站的P波、S波、Rayleigh波和 Love波中得到的视震源时间函数,获取了主震的平均视震源时间函数.对视震源时间函数的分析表明,2005年克什米尔MW7.6地震的持续时间大约为25 s,这是一次“急始型”地震,总体上表现为圆盘形破裂.但有迹象表明,破裂在初期有向西北方向发展的单侧传播趋势.  相似文献   
997.
Periodic variations in magma discharge rate and ground deformation have been commonly observed during lava dome eruptions. We performed a stability analysis of a conduit flow model by Barmin et al. [Barmin, A., Melnik, O., Sparks, R.S.J., 2002. Periodic behavior in lava dome eruptions. Earth and Planetary Science Letters 199 (1-2), 173–184], in which the periodic variations in magma flow rate and chamber pressure are reproduced as a result of the temporal and spatial changes of the magma viscosity controlled by the kinetics of crystallization. The model is reduced to a dynamical system where the time derivatives of the magma flow rate (dQ/dt) and the chamber pressure (dP/dt) are functions of Q and P evaluated at a shifted time  t?. Here, the time delay t? represents the time for the viscosity of fluid particle to increase in a conduit. The dynamical system with time delay is approximated by a simple two-dimensional dynamical system of Q and P where t? is given as a parameter. The results of our linear stability analyses for these dynamical systems indicate that the transition from steady to periodic flow depends on nonlinearities in the steady state relation between Q and P. The steady state relation shows a sigmoidal curve in Q − P phase plane; its slope has negative values at intermediate flow rates. The steady state solutions become unstable, and hence P and Q oscillate periodically, when the negative slope of the steady state relation ([dP/dQ]S) exceeds a critical value; that is [dP/dQ]S < − t?γ/(2Vch), where Vch is the chamber volume and γ is an elastic constant which is related to the rigidity of chamber wall. We also found that the period and the pattern of oscillation of the conduit flow primarily depend on a quantity defined by LVch/r4, where L is the conduit length and r is the conduit radius.  相似文献   
998.
We present a comparison of methods for the analysis of the numerical substructure in a real‐time hybrid test. A multi‐tasking strategy is described, which satisfies the various control and numerical requirements. Within this strategy a variety of explicit and implicit time‐integration algorithms have been evaluated. Fully implicit schemes can be used in fast hybrid testing via a digital sub‐step feedback technique, but it is shown that this approach requires a large amount of computation at each sub‐step, making real‐time execution difficult for all but the simplest models. In cases where the numerical substructure poses no harsh stability condition, it is shown that the Newmark explicit method offers advantages of speed and accuracy. Where the stability limit of an explicit method cannot be met, one of the several alternatives may be used, such as Chang's modified Newmark scheme or the α‐operator splitting method. Appropriate methods of actuator delay compensation are also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
999.
Lake Caviahue (northern Patagonia, Argentina) is a large glacial lake acidified by volcanic fluids from Copahue volcano. The lake and the feeding rivers were sampled annually from 1997 till early 2006, including the eruptive period of 2000. Lake Caviahue waters evolved over time, with the most concentrated waters in 2000 during the eruptive period, followed by gradual dilution that was interrupted by renewed acidification in 2003–2004. Inversion of the lake water data and application of a dynamic non-steady state model for the lake provides our best quantitative estimates for the variation in element fluxes over the 9-year period. The model flux results agree well with most of the measured fluxes. The Copahue hydrothermal system had gently declining element fluxes between 1997 and mid-1999, although the lake was still becoming more concentrated. About 2–3 months before the 2000 eruption, element fluxes increased strongly, but the hydrothermal fluxes almost shutoff directly after the main eruptive events. The fluxes of several elements recovered post-2001, with an increase in element fluxes in 2003–2004; the lake became more dilute between 2004 and 2006. The intrusion of new magma into the hydrothermal system just prior to the 2000 eruption led to enhanced water rock interaction, with higher concentrations of the rock forming elements in the fluids, and the hot spring flow rate increased as a result of the higher pressure in the reservoir. The fluids became saturated in alunite and jarosite, and they were already saturated with anhydrite. Precipitation of these minerals possibly led to a decreased permeability of the hydrothermal reservoir, leading to the strongly reduced element fluxes just after the eruption. In addition, K, Al and S were retained in the newly precipitated minerals as well, further diminishing their export. The acidification in 2003–2004 may have resulted from a new small intrusion of magma or resulted from seismic activity that created new permeability and fresh rock surfaces for water rock interaction. The volcano is a significant source of toxic trace elements such as F, As, B and Li as well as a nutrient (P) for the local watershed. Monitoring of the hydrothermal fluids in the river that drains Copahue, especially the S/Cl, Mg/Cl and Mg/K values as well as the magnitude of the element fluxes would provide the best information for eruption forecasting for this volcano.  相似文献   
1000.
This paper studies the links between scaling properties of river flow time series by comparing the results of three techniques applied to an extended data set of 34 French discharge gauging stations. The three approaches used are based on different mathematical tools and hypotheses: (1) shape analysis of flood hydrographs; (2) a multifractal framework through spectral and moment analyses, and (3) flood frequency analysis through the fitting of flood duration frequency curves (QdF). The general aim is to test the hypothesis of scaling invariance of river flow and the shape invariance of the hydrographs, in order to investigate the link between scaling properties and flow dynamics. In particular, the coherence between different approaches widely used in the literature to describe these characteristics is evaluated through the estimation of parameters defining the range of time‐scales on which the scaling properties are valid. The results show that most of these timescale parameters are linked to the flow dynamics and suggest that the approaches applied are interrelated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号