首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8289篇
  免费   1796篇
  国内免费   2920篇
测绘学   456篇
大气科学   4156篇
地球物理   1774篇
地质学   2748篇
海洋学   1684篇
天文学   224篇
综合类   574篇
自然地理   1389篇
  2024年   57篇
  2023年   139篇
  2022年   340篇
  2021年   392篇
  2020年   418篇
  2019年   511篇
  2018年   408篇
  2017年   430篇
  2016年   447篇
  2015年   499篇
  2014年   622篇
  2013年   695篇
  2012年   654篇
  2011年   640篇
  2010年   514篇
  2009年   628篇
  2008年   554篇
  2007年   694篇
  2006年   549篇
  2005年   531篇
  2004年   437篇
  2003年   361篇
  2002年   291篇
  2001年   289篇
  2000年   292篇
  1999年   248篇
  1998年   251篇
  1997年   178篇
  1996年   137篇
  1995年   145篇
  1994年   143篇
  1993年   125篇
  1992年   85篇
  1991年   65篇
  1990年   46篇
  1989年   43篇
  1988年   36篇
  1987年   19篇
  1986年   12篇
  1985年   18篇
  1984年   15篇
  1983年   8篇
  1982年   13篇
  1981年   7篇
  1980年   6篇
  1978年   7篇
  1977年   3篇
  1976年   1篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
281.
282.
Major concentrations of Al2O3, Fe2O3, MgO, CaO, Na2O and K2O, minor levels of TiO2, P2O5 and thirty petrologically, geochemically and environmentally significant trace elements have been determined in microwave oven acid leachates of whole powdered coal samples by direct current plasma‐atomic emission spectrometry (DCP‐AES). A single sample preparation procedure was suitable for all the determinations with no additional dilution step for major elements solution. Dried samples (0.5 g) were treated in low‐pressure PFA digestion vessels with HF/HCl/HNO3/HClO4 acids to quantitatively extract the analytes from the bulk material, while leaving the major part of organic matrix as a residue. The major constituents of geological samples, in particular the easily ionised elements (EIEs) such as alkali and alkaline earths, may complicate the instrumental determinations in DCP‐AES because of differential enhancements of elemental emission intensities and stray light interferences. Taking account of these factors, the coal matrix is considered to have very low major oxide totals as compared to many other common geo‐environmental and related materials (rocks, sediments, soil, ashes etc.). The sample size employed here, while yielding a relatively concentrated solution to cover a wide range of elemental determinations, provided a sample matrix that significantly diminished interferences for DCP measurements. The need for closely matching the unknowns and calibrators was eliminated except for overall acidity and an excess quantity of caesium for EIE buffering. Calibration of the spectrometer was accomplished by simple aqueous single element solutions as high concentration calibrators in addition to a reagent blank as a low concentration calibrator. Two point working curves were established to allow for the maximum concentrations of each element expected in the unknowns. The precision of determinations under routine conditions as well as the reproducibility of the leaching and precision of instrumental measurements have been evaluated. Relative standard deviations (RSD) were of 1–2% for those elements whose concentrations in solid samples were well above the limits of quantification. Method detection limits in the buffered solutions were also evaluated. To evaluate the accuracy of the microwave oven‐DCP method a suite of eight certified coal reference materials of differing rank, were analysed with good agreement with the certified and/or available published data. Results are presented for the uncertified major oxides in the AR series reference materials.  相似文献   
283.
Abstract. The Batu Hijau porphyry Cu‐Au deposit, Sumbawa Island, Indonesia, is associated with a tonalitic intrusive complex. The temperature‐pressure condition of mineralization at the Batu Hijau deposit is discussed on the basis of fluid inclusion microthermometry. Then, the initial Cu‐Fe sulfide mineral assemblage is discussed. Bornite and chalcopyrite are major copper ore minerals associated with quartz veinlets. The quartz veinlets have been classified into ‘A’ veinlets associated with bornite, digenite, chalcocite and chalcopyrite, ‘B’ veinlets having chalcopyrite bornite along vuggy center‐line, rare ‘C’ chalcopyrite‐quartz veinlets, and late ‘D’ veinlets consisting of massive pyrite and quartz (Clode et al., 1999). Copper and gold mineralization is associated with abundant ‘A’ quartz veinlets. Abundant fluid inclusions are found in veinlet quartz consisting mainly of gas‐rich inclusions and polyphase inclusions throughout the veinlet types. The hydrothermal activity occurred in temperature‐pressure conditions of aqueous fluid immiscibility into hypersaline brine and dilute vapor. The halite dissolution (Tm[halite]) and liquid‐vapor homogenization (Th) temperatures of the polyphase inclusions in veinlet quartz range from 270 to 472d?C and from 280 to 454d?C, respectively. The estimated salinity ranges from 36 to 47 wt% (NaCl equiv.). The apparent pressures lower than 300 bars are estimated to have been along the liquid‐vapor‐halite curve for the fluid inclusions having the Th lower than the Tm that trapped the brine saturated with halite, or at slightly higher pressure relative to liquid‐vapor‐halite curve for the fluid inclusions having the Th higher than the Tm that trapped the brine unsaturated with halite. The actual temperature and pressure during the hydrothermal activity at the Batu Hijau deposit are estimated to have been around 300d?C and 50 bars. At such temperature‐pressure conditions, the principal and initial Cu‐Fe sulfide mineral assemblages are thought to be chalcopyrite + bornite solid solution (bnss) for the chalcopyrite‐bearing assemblage, and chalcocite‐digenite solid solution and bnss for the chalcopyrite‐free assemblage.  相似文献   
284.
Some considerations concerning seismic geomorphology and paleoseismology   总被引:3,自引:1,他引:3  
F. Dramis  A.M. Blumetti   《Tectonophysics》2005,408(1-4):177
Seismic geomorphology studies landforms which developed in connection with earthquakes. Among them, two different end members may be distinguished: 1) seismo-tectonic landforms, including surface faults and fractures, land uplift and subsidence at different scales, surface bulges, elongate ridges, and any other permanent ground deformations directly related to tectonic stress, and 2) seismo-gravitational landforms, such as landslides, deep-seated gravitational slope deformations, sinkholes, and fissures due to sediment compaction or liquefaction and sand blows, connected with both seismic shaking and gravitational stress.A clear-cut distinction between the two categories of landforms is not always easy to make (and in many instances not really useful), while there are, in many cases, ground effects that might be (and should be) considered as simultaneous combinations of seismo-tectonic and seismo-gravitational processes. This applies especially to surface fracturing and faulting which could be the combined result of tectonic stress, stress produced by seismic shaking, and gravitational stress.The objective of this paper is to review selected case histories mainly from Italy and the Mediterranean region, in order to show the importance of a comprehensive study of earthquake-generated landforms for understanding the seismicity level of the area under investigation. We argue that in earthquake prone areas, seismic landforms often constitute typical patterns (seismic landscapes) whose recognition, mapping and paleoseismological analysis may help in the evaluation of seismic hazards.  相似文献   
285.
Nongla, a typical karst dynamic system (KDS) monitoring site, is located at Nongla Village, Mashan County, Guangxi, China. The data from a Greenspan CTDP300 multichannel data logger indicates that the KDS is highly sensitive to environmental changes. Multi-day and diurnal physico-chemical composition of epikarst spring water is quite different under different climatic conditions. During a day with no rainfall, water temperature and air temperature have similar variations. Electrical conductivity (EC) has good positive correlation with pH value and water temperature. During rainstorms, the physico-chemical composition of the spring water is initially strongly effected by dilution, pH and EC drop rapidly. However, half to one hour later, EC returns to normal and the CO2 effects will be the dominant physical effect. This is due to the high fissure rates and high permeability in the epikarst zone. Dilution effects were observed during the entire rainstorm event,whereas, it only acts during the earliest period of light rain. Therefore, it is necessary to examine the water–rock–CO2 combination as a whole system to explain the hydrochemical behavior of epikarst processes.  相似文献   
286.
This paper advocates the use of a multiphase model, already developed for static or quasi‐static geotechnical engineering problems, for simulating the behaviour of piled raft foundations subject to horizontal as well as rocking dynamic solicitations. It is shown that such a model, implemented in a FEM code, yields appropriate predictions for the foundation impedance characteristics, provided that shear and bending effects in the piles are taken into account, thus corroborating the findings of the asymptotic homogenization theory. Besides, it is notably pointed out that such a multiphase‐based computational tool makes it possible to assess the dynamic behaviour of pile groups in a much quicker way than when using direct numerical simulations, which may face oversized problems when large pile groups are concerned. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
287.
To accurately predict soil volume changes under thermal cycles is of great importance for analysing the performance of many earth structures such as the energy pile and energy storage system. Most of the existing thermo‐mechanical models focus on soil behaviour under monotonic thermal loading only, and they are not able to capture soil volume changes under thermal cycles. In this study, a constitutive model is proposed to simulate volume changes of saturated soil subjected to cyclic heating and cooling. Two surfaces are defined and used: a bounding surface and a memory surface. The bounding surface and memory surface are mainly controlled by the preconsolidation pressure (a function of plastic volumetric strain) and the maximum stress experienced by the soil, respectively. Under thermal cycles, the distance of the two surfaces and plastic modulus increase with an accumulation of plastic strain. By adopting the double surface concept, a new elastoplastic model is derived from an existing single bounding surface thermo‐mechanical model. Comparisons between model predictions and experimental results reveal that the proposed model is able to capture soil volume changes under thermal cycles well. The plastic strain accumulates under thermal cycles, but at a decreasing rate, until stabilization. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
288.
Shrink–swell soils can cause distresses in buildings, and every year, the economic loss associated with this problem is huge. This paper presents a comprehensive system for simulating the soil–foundation–building system and its response to daily weather conditions. Weather data include rainfall, solar radiation, air temperature, relative humidity, and wind speed, all of which are readily available from a local weather station or the Internet. These data are used to determine simulation flux boundary conditions. Different methods are proposed to simulate different boundary conditions: bare soil, trees, and vegetation. A coupled hydro‐mechanical stress analysis is used to simulate the volume change of shrink–swell soils due to both mechanical stress and water content variations. Coupled hydro‐mechanical stress‐jointed elements are used to simulate the interaction between the soil and the slab, and general shell elements are used to simulate structural behavior. All the models are combined into one finite element program to predict the entire system's behavior. This paper first described the theory for the simulations. A site in Arlington, Texas, is then selected to demonstrate the application of the proposed system. Simulation results are shown, and a comparison between measured and predicted movements for four footings in Arlington, Texas, over a 2‐year period is presented. Finally, a three‐dimensional simulation is made for a virtual residential building on shrink–swell soils to identify the influence of various factors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
289.
Soil water repellency is a widespread phenomenon with the capacity to alter hydrological and geomorphological processes. Water repellency decays with time, and the consequences are only of concern during the timescale at which the water repellency persists. This study aimed to characterize the influence of temperature and humidity on the breakdown of water repellency. Apparent contact angle measurements were carried out on samples consisting of sand treated with stearic acid as well as naturally repellent dune sands and composts. Temperature and humidity were controlled using a cooled incubator and a purpose designed enclosed box in which humidity could be raised or lowered. Results showed the contact angle of the stearic‐acid‐treated sands decayed with time and that there was a significant increase with stearic acid concentration. For all samples, the decay in apparent contact angle could be described with a continuous breakdown model. The stearic‐acid‐treated sands showed a significant increase in contact angle with relative humidity at a temperature of 10 and 20 °C. These differences diminished with increasing temperature. Similar results were seen for the dune sands and composts. Despite the influence of temperature and humidity on contact angles, there was no significant change in the rate at which the contact angle decayed in any sample. Absolute humidity was found to provide a more relevant indicator than relative humidity when assessing the influence of humidity on repellency over a range of temperatures. The contact angle initially increased with absolute humidity before plateauing owing to the confounding effect of temperature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
290.
Stream mesoscale habitats have systematic topographic relationships to hyporheic flow patterns, which may create predictable temperature variation between mesoscale habitat types. We investigated whether systematic differences in temperature metrics occurred between mesoscale habitats within reaches of small streams tributary to the upper Little Tennessee River, southern Appalachians. Surface water temperature was recorded over three or four mid‐summer days in four mesoscale habitat types: riffle, main riffle, pool and alcove in 44 stream segments (sites). Temperature metrics were calculated for each mesoscale habitat relative to the mean value of the metric over the stream: Δ maximum temperature, Δ average maximum temperature and Δ maximum daily variation and also for each site: standard deviation of the maximum temperature and average diurnal variation (ADV). Sites were categorized as fully or partially forested. Pool tailouts had statistically significantly lower Δ maximum temperature and Δ average maximum temperature than riffle tailouts in partially forested sites, although differences were small. This was the opposite of what was expected in the presence of hyporheic exchange, indicating hyporheic exchange is not a dominant driver of mesoscale habitat temperatures at these sites. Temperature differences between mesoscale habitat units were small and unlikely to have ecological significance. We also evaluated relationships between stream temperature and riparian condition, watershed % impervious surfaces, watershed % non‐forested and elevation. ADV and standard deviation of the maximum temperature were significantly higher in partially forested sites, indicating that partially forested sites have greater temperature ranges and spatial variation of maximum temperatures. ADV decreased with elevation and increased with % impervious surfaces. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号