首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2698篇
  免费   190篇
  国内免费   340篇
测绘学   150篇
大气科学   180篇
地球物理   690篇
地质学   1528篇
海洋学   221篇
天文学   45篇
综合类   122篇
自然地理   292篇
  2024年   18篇
  2023年   50篇
  2022年   86篇
  2021年   104篇
  2020年   204篇
  2019年   140篇
  2018年   159篇
  2017年   213篇
  2016年   160篇
  2015年   179篇
  2014年   285篇
  2013年   420篇
  2012年   272篇
  2011年   54篇
  2010年   73篇
  2009年   77篇
  2008年   53篇
  2007年   66篇
  2006年   69篇
  2005年   50篇
  2004年   64篇
  2003年   48篇
  2002年   76篇
  2001年   54篇
  2000年   33篇
  1999年   44篇
  1998年   26篇
  1997年   17篇
  1996年   21篇
  1995年   24篇
  1994年   18篇
  1993年   8篇
  1992年   14篇
  1991年   9篇
  1990年   6篇
  1989年   10篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1976年   1篇
排序方式: 共有3228条查询结果,搜索用时 62 毫秒
551.
A new style of komatiite-associated sulfide-poor platinum-group element (PGE: Os, Ir, Ru, Rh, Pt, Pd) mineralisation has been identified at Wiluna in the strongly nickel sulfide (NiS) mineralised Agnew – Wiluna Greenstone Belt, Western Australia. The komatiite sequence at Wiluna is ~200 m thick and comprises a basal pyroxenite layer, a thick ortho-to-mesocumulate-textured peridotite core, which is overlain by rhythmically layered wehrlite, oikocrystic pyroxenite and thick upper gabbroic margins. Pegmatoid and dendritic (harrisitic) domains are common features, whereas spinifex-textured horizons and flow-top breccias are absent. The presence of anomalous PGE-enriched horizons (ΣPt – Pd = 200 – 500 ppb) in the oikocrystic pyroxenite and in the layered melagabbro and gabbronorite horizons directly overlying the wehrlite unit is due to the presence of fine-grained (1 – 10 μm) platinum-group minerals (PGMs). More than 70 PGM grains were identified, and a considerable mineralogical variability was constrained. However, only Pd – Pt-bearing phases were identified, whereas no Ir – Ru-bearing PGMs were found in any of the sections examined. Interestingly, all PGMs are not in paragenetic association with sulfides, and only sulfide-poor/free intervals contain significant PGM concentrations. The whole-rock PGE sequence largely reflects the PGM distribution. It is hypothesised that the Pd – Pt enrichment in the oikocrystic pyroxenite and melagabbros and the overall Ir – Ru depletion in the upper mafic section of the sequence are the result of extensive olivine and chromite crystallisation in the basal ultramafic section. PGE saturation was driven by extensive crystallisation of silicate and oxide phases in a sulfide-undersaturated environment. The crystallisation of clinopyroxene in the oikocrystic pyroxenite horizon may have triggered the formation of Pt – Pd-bearing alloys and arsenides, which were the first PGMs to form. Stratiform sulfide-poor PGE mineralisation at Wiluna is more similar in stratigraphic setting, style and composition to PGE-rich sulfide-poor mineralisation zones in thick differentiated intrusions, rather than to other PGE-enriched zones in komatiite-hosted systems, where PGE enrichment is directly associated with accumulations of magmatic sulfides.  相似文献   
552.
Detrital iron deposits (DID) are located adjacent to the Precambrian bedded iron deposit (BID) of Joda near the eastern limb of the horseshoe-shaped synclinorium, in the Bonai–Keonjhar belt of Orissa. The detrital ores overlie the Dhanjori Group sandstone as two isolated orebodies (Chamakpur and Inganjharan) near the eastern and western banks of the Baitarani River, respectively. The DID occur as pebble/cobble conglomerates containing iron-rich clasts cemented by goethite. Mineralogy, chemistry and lamination of these clasts are similar to that found in the nearby BID ores. Enrichment of trace and rare-earth elements in the DID relative to the BID is attributed to their concentration during the precipitation of cementing material. The detrital iron orebodies formed when Proterozoic weathering processes eroded pre-existing BID outcrops located on the Joda Ranges, and the resulting detritus accumulated in the paleochannels. In situ dissolution in association with abundant organic material produced Fe-saturated groundwater, which re-precipitated as goethite within the aggraded channel to cement the detritals. Growth of microplaty hematite in the goethite matrix suggests some level of subsequent burial metamorphism.  相似文献   
553.
The Agnew–Wiluna greenstone belt in the Yilgarn Craton of Western Australia is the most nickel-sulfide-endowed komatiite belt in the world. The Agnew–Wiluna greenstone belt contains two mineralised units/horizons that display very different volcanological and geochemical features. The Mt Keith unit comprises >500 m-thick spinifex-free adcumulate-textured lenses, which are flanked by laterally extensive orthocumulate-textured units. Spinifex texture is absent from this unit. Disseminated nickel sulfides, interstitial to former olivine crystals, are concentrated in the lensoidal areas. Massive sulfides are locally present along the base or margins of the lenses or channels. The Cliffs unit is locally >150 m thick and comprises a sequence of differentiated spinifex-textured flow units. The basal unit is the thickest, and contains basal massive nickel-sulfide mineralisation. The Mt Keith and Cliffs units display important common features: (i) MgO contents of 25–30% in inferred parental magmas; and (ii) Al/Ti ratios of ~20 (Munro-type). However, the Mt Keith unit is highly crustally contaminated (e.g. LREE-enriched, high HFSEs), whereas the Cliffs unit does not display evidence of significant crustal assimilation. We argue that the distinct trace-element concentrations and profiles of the two komatiite units reflect their different emplacement style and country rocks: the Mt Keith unit is interpreted to have been emplaced as an intrusive sill into dacitic volcanic units whereas the Cliffs unit was extruded as lava flow onto tholeiitic basalts in a subaqueous environment. The mode of emplacement and nature of country rock is the single biggest factor in controlling mineralisation styles in komatiites. On the other hand, evidence of crustal contamination does not necessarily provide information of the prospectivity of komatiites to host Ni–Cu–(PGE) mineralisation, despite being a good proxy for the style of komatiite emplacement and the nature of country rocks.  相似文献   
554.
Mafic–ultramafic rocks in structurally dismembered layered intrusions comprise approximately 40% by volume of greenstones in the Murchison Domain of the Youanmi Terrane, Yilgarn Craton. Mafic–ultramafic rocks in the Murchison Domain may be divided into five components: (i) the ~2810 Ma Meeline Suite, which includes the large Windimurra Igneous Complex; (ii) the 2800 ± 6 Ma Boodanoo Suite, which includes the Narndee Igneous Complex; (iii) the 2792 ± 5 Ma Little Gap Suite; (iv) the ~2750 Ma Gnanagooragoo Igneous Complex; and (v) the 2735–2710 Ma Yalgowra Suite of layered gabbroic sills. The intrusions are typically layered, tabular bodies of gabbroic rock with ultramafic basal units which, in places, are more than 6 km thick and up to 2500 km2 in areal extent. However, these are minimum dimensions as the intrusions have been dismembered by younger deformation. In the Windimurra and Narndee Igneous Complexes, discordant features and geochemical fractionation trends indicate multiple pulses of magma. These pulses produced several megacyclic units, each ~200 m thick. The suites are anhydrous except for the Boodanoo Suite, which contains a large volume of hornblende gabbro. They also host significant vanadium mineralisation, and at least minor Ni–Cu–PGE mineralisation. Collectively, the areal distribution, thickness and volume of mafic–ultramafic magma in these complexes is similar to that in the 2.06 Ga Bushveld Igneous Complex, and represents a major addition of mantle-derived magma to Murchison Domain crust over a 100 Ma period. All suites are demonstrably contemporaneous with packages of high-Mg tholeiitic lavas and/or felsic volcanic rocks in greenstone belts. The distribution, ages and compositions of the earlier mafic–ultramafic rocks are most consistent with genesis in a mantle plume setting.  相似文献   
555.
Despite extensive geochemical study and their importance to granite studies, the geochronology of Silurian to early-Devonian granitic rocks of southeastern Australia is poorly understood. In order to provide an improved temporal framework, new ion microprobe U–Pb zircon ages are presented from these rocks, and previous work is critically reviewed. Geochronological control is best in the Berridale Batholith, where S- and I-type granites have a close spatial relationship. In this region, there is a small volume of I-type granite that crystallised at 436 Ma, followed closely by a large volume of S-type granite at 432 Ma. I-type granite is abundant in a second peak at ca 417 Ma, although the Jindabyne pluton from the Kosciuszko Batholith is slightly older, at 424 Ma. A broader survey of S-type granite throughout the eastern Lachlan Orogen shows that the 432 Ma event is ubiquitous. There is no temporal overlap between S- and I-type granites in the Kosciuszko and Berridale Batholiths, which suggests that factors other than variations in degree of crustal contamination (which may include variation in tectonic setting, heat-flow, mass transfer across the crust–mantle boundary and/or availability in source materials) contribute to the diversity in granite types. The S-type granitic rocks occupy an aerial extent of greater than 28 000 km2, and geochronological constraints suggest that the crystallisation of these granites took place over a relatively small interval, probably less than 10 m.y. This implies a magmatic flux of over 64 km3/Ma per km strike length, comparable to other high-flux granitic belts. Previous work has linked the Benambran Orogeny to the generation of the S-type granites, and so the age of these granites constrains the age of Benambran Orogenesis  相似文献   
556.
This study provides new structural data that show that the Adaminaby Group is part of the Narooma accretionary complex and has been overprinted by HT/LP metamorphism associated with Middle Devonian Moruya Suite intrusions. The grade of metamorphism based on Kübler Indices is the same in the Wagonga and Adaminaby Groups at Batemans Bay inferring that these rocks were involved in the same accretionary event. White micas in slates of the Adaminaby Group record apparent K–Ar ages of 384.6 ± 7.9 Ma and 395.8 ± 8.1 Ma. These ages are believed to represent the age of Middle to Upper Devonian Buckenbowra Granodiorite. Kübler Index values indicate lower epizonal (greenschist facies) metamorphic conditions and are not influenced by heating in metamorphic aureoles of the plutons. All b cell lattice parameter values are characteristic of intermediate pressure facies conditions although they are lower in the metamorphic aureole of the Buckenbowra Granodiorite than in the country rock, defining two areas with dissimilar baric conditions. East of the Buckenbowra Granodiorite, b cell lattice parameter values outside the contact aureole (x = 9.033 Å; n = 8) indicate P = 4 kb, and assuming a temperature of 300°C, infer a depth of burial of approximately 15 km for these rocks with a geothermal gradient of 20°C/km. In the metamorphic aureole of the Buckenbowra Granodiorite, b cell lattice parameter values (x = 9.021 Å; n = 41) indicate P = 3.1 kb inferring exhumation of the Adaminaby Group rocks to a depth of approximately 11 km prior to intrusion. A geothermal gradient of 36°C/km operated in the aureole during intrusion. An extensional back-arc environment prevailed in the Adaminaby Group during the Middle to Upper Devonian.  相似文献   
557.
The spatial and temporal distribution of near-shore fresh submarine groundwater discharge (SGD) was characterised from the coastal aquifers of the Willunga Basin, South Australia, an extensive aquifer system that supports an important viticultural region. Measurements of electrical conductivity (EC) and 222Rn (radon) activity were collected at 19 sites along the coastline during the Southern Hemisphere spring (2011) and summer (2013). At each site, samples were collected from the surf zone as well asporewater from beach sediment in the intertidal zone. Surf-zone radon activity ranged from <5 to 70mBq L–1, and intertidal porewater radon ranged over two orders of magnitude (220–36 940 mBq L–1) along the Willunga Basin coastline during both surveys. Overall, surf-zone and porewater EC was lower in the spring 2011 survey than in the summer 2013 survey. Porewater EC was similar to that of coastal water at most sites along the coastline, except at three sites where porewater EC was found to be lower than coastal water during both surveys, and three sites where evaporated seawater was observed in the summer survey. Based on the patterns in radon and EC along the coastline, two sites of localised fresh SGD were identified, in addition to a groundwater spring that is known to discharge to the coast. The results indicate that near-shore fresh SGD occurs as localised seeps rather than diffuse seepage along the entire coastline. The apparent absence of groundwater discharge at most locations is also consistent with current evidence suggesting that extensive groundwater pumping within the basin has resulted in seawater intrusion across much of the coastline. These observations also suggest that previous studies are likely to have over-estimated SGD rates from the Willunga Basin because they assumed that SGD occurred along the entire coastline.  相似文献   
558.

The definition of the Richter Ml magnitude scale is in terms of seismic wave horizontal components recorded on Wood‐Anderson seismographs. However, at many seismograph sites only the vertical component is available, and at sedimentary sites horizontal components are usually significantly amplified, causing complications in the assignment of a magnitude to an earthquake. Because each earthquake can be recorded at a different subset of sites, each subset having a different combination of site amplifications, the assignment of a magnitude is dependent upon the seismograph site combination that records a particular earthquake. Although there is some amplification of the vertical component at sedimentary foundation sites, it is shown that a reduced spread of values of Ml magnitude, consistent with low amplification (bedrock) site magnitudes, can be achieved using the vertical component to compute the magnitude and adding 0.2 to adjust to the Ml magnitude scale (defined in terms of the horizontal components). This presupposes that the sites used by Richter were on bedrock; however, even if this is incorrect, it appears to be a necessary precondition for the world‐wide unification of the Richter scale along with defining the true gain of Wood‐Anderson seismographs rather than accepting the design gain of 2800. Site corrections would be smaller than those established using the horizontal components. Taking into account the use of only the vertical component in the calculation of Ml and including the 0.2 adjustment to the equivalent horizontal component derived magnitude, the expression for the calculation of magnitudes in the Victoria region becomes:

Ml = logAz ‐ logSz + 0.9 + logR + 0.0056Re‐0.0013R

where Az is the equivalent Wood‐Anderson seismograph displacement amplitude, Sz is the site amplification (vertical component) and R is the hypocentral distance.  相似文献   
559.
The Vetas-California Mining District (VCMD), located in the central part of the Santander Massif (Colombian Eastern Cordillera), based on U–Pb dating of zircons, records the following principal tectono-magmatic events: (1) the Grenville Orogenic event and high grade metamorphism and migmatitization between ∼1240 and 957 Ma; (2) early Ordovician calc–alkalic magmatism, which was synchronous with the Caparonensis–Famatinian Orogeny (∼477 Ma); (3) middle to late Ordovician post-collisional calc–alkalic magmatism (∼466–436 Ma); (4) late Triassic to early Jurassic magmatism between ∼204 and 196 Ma, characterized by both S- and I-type calc–alkalic intrusions and; (5) a late Miocene shallowly emplaced intermediate calc–alkaline intrusions (10.9 ± 0.2 and 8.4 ± 0.2 Ma). The presence of even younger igneous rocks is possible, given the widespread magmatic–hydrothermal alteration affecting all rock units in the area.The igneous rocks from the late Triassic–early Jurassic magmatic episodes are the volumetrically most important igneous rocks in the study area and in the Colombian Eastern Cordillera. They can be divided into three groups based on their field relationships, whole rock geochemistry and geochronology. These are early leucogranites herein termed Alaskites-I (204–199 Ma), Intermediate rocks (199–198 Ma), and late leucogranites, herein referred to as Alaskites-II (198–196 Ma). This Mesozoic magmatism is reflecting subtle changes in the crustal stress in a setting above an oblique subduction of the Panthalassa plate beneath Pangea.The lower Cretaceous siliciclastic Tambor Formation has detrital zircons of the same age populations as the metamorphic and igneous rocks present in the study area, suggesting that the provenance is related to the erosion of these local rocks during the late Jurassic or early Cretaceous, implying a local supply of sediments to the local depositional basins.  相似文献   
560.
In north-central Brazil, a number of granite plutons, which intrude Paleoproterozoic gneiss-granulite terrains of the Goiás Massif, crop out along a thermal axis parallel to the Transbrasiliano Lineament. Single zircon lead evaporation ages from three granitic bodies span between 552 and 545 Ma. Sm–Nd model ages (TDM) vary between 2.1 and 1.7 Ga and negative εNd(0.55 Ga) values between −10 and −13 show that Paleoproterozoic crust was involved in the genesis of these granites. These plutons, which form the Lajeado Intrusive Suite are part of an important Ediacaran magmatic event in central-northern of the Tocantins Tectonic Province, composed of metaluminous to slightly peraluminous granites with geochemical characteristics similar to A-type granites, whose crystallization occurred under low water activity during magmatic emplacement. The granitic intrusive bodies are related to a crustal extensional/transtensional tectonic event at the end of the Neoproterozoic. They may have connection with the granitic plutons of similar age (0.56–0.52 Ga) in northwestern Ceará state, on the other side of the Paleozoic Parnaíba Basin in northwest of Borborema Province, along the Transbrasiliano Lineament.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号