首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2766篇
  免费   195篇
  国内免费   379篇
测绘学   151篇
大气科学   181篇
地球物理   699篇
地质学   1624篇
海洋学   225篇
天文学   46篇
综合类   122篇
自然地理   292篇
  2024年   28篇
  2023年   88篇
  2022年   90篇
  2021年   109篇
  2020年   212篇
  2019年   148篇
  2018年   163篇
  2017年   218篇
  2016年   168篇
  2015年   185篇
  2014年   290篇
  2013年   420篇
  2012年   272篇
  2011年   55篇
  2010年   74篇
  2009年   79篇
  2008年   53篇
  2007年   67篇
  2006年   70篇
  2005年   50篇
  2004年   64篇
  2003年   48篇
  2002年   76篇
  2001年   54篇
  2000年   33篇
  1999年   44篇
  1998年   26篇
  1997年   17篇
  1996年   22篇
  1995年   24篇
  1994年   20篇
  1993年   9篇
  1992年   14篇
  1991年   9篇
  1990年   6篇
  1989年   10篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1976年   1篇
排序方式: 共有3340条查询结果,搜索用时 15 毫秒
511.
The newly discovered Jiyuan Cu–Ag–(Pb–Zn–Au) deposit is located in the southern section of the eastern Tianshan orogenic belt, Xinjiang, northwestern China. It is the first documented deposit in the large Aqikekuduke Ag–Cu–Au belt in the eastern Tianshan orogen. Detailed field observations, parageneses, and fluid inclusion studies suggest an epithermal ore genesis for the main Cu–Ag mineralization, accompanied by a complicated hydrothermal alteration history most likely associated with the multi-stage tectonic evolution of the eastern Tianshan. The Jiyuan Cu–Ag ore bodies are located along the EW-striking, south-dipping Aqikekuduke fault and are hosted by Precambrian marble and intercalated siliceous rocks. Early-stage skarn alteration occurred along the contact zone between the marble layers and Early Carboniferous diorite–granodiorite and monzogranite intrusions; the skarns are characterized by diopside–tremolite–andradite–pyrite–(magnetite) assemblages. Local REE-enriched synchysite–rutile–arsenopyrite–(clinochlorite–microcline–albite) assemblages are related to K–Na alteration associated with the monzogranite intrusions and formed under conditions of high temperature (310°C) and high salinity (19.9 wt.% NaCl). Subsequent hydrothermal alteration produced a series of quartz and calcite veins that precipitated from medium- to low-temperature saline fluids. These include early ‘smoky’ quartz veins (190°C; 3.0 wt.% NaCl) that are commonly barren, coarse-grained Cu–Ag mineralized quartz veins (210°C; 2.4 wt.% NaCl), and late-stage unmineralized calcite veins (140°C; 1.1 wt.% NaCl). Tremolite and Ca-rich scapolite veins formed at an interval between early and mineralized quartz veins, indicating a high-temperature, high-salinity (>500°C; 9.5 wt.% NaCl) Ca alteration stage. Fluid mixing may have played an important role during Cu–Ag mineralization and an external low-temperature Ca-rich fluid is inferred to have evolved in the ore-forming system. The Jiyuan auriferous quartz veins possess fluid characteristics distinct from those of the Cu–Ag mineralized quartz veins. CO2-rich fluid inclusions, fluid boiling, and mixing all demonstrate that these auriferous quartz veins acted as hosts for the orogenic-type gold mineralization, a common feature in the Tianshan orogenic belt.  相似文献   
512.
The active kinematics of the eastern Tibetan Plateau are characterized by the southeastward movement of a major tectonic unit, the Chuan-Dian crustal fragment, bounded by the left-lateral Xianshuihe–Xiaojiang fault in the northeast and the right-lateral Red River–Ailao Shan shear zone in the southwest. Our field structural and geomorphic observations define two sets of young, active strike–slip faults within the northern part of the fragment that lie within the SE Tibetan Plateau. One set trends NE–SW with right-lateral displacement and includes the Jiulong, Batang, and Derong faults. The second set trends NW–SE with left-lateral displacement and includes the Xianshuihe, Litang, Xiangcheng, Zhongdian, and Xuebo faults. Strike–slip displacements along these faults were established by the deflection and offset of streams and various lithologic units; these offsets yield an average magnitude of right- and left-lateral displacements of ~15–35 km. Using 5.7–3.5 Ma as the time of onset of the late-stage evolution of the Xianshuihe fault and the regional stream incision within this part of the plateau as a proxy for the initiation age of conjugate strike–slip faulting, we have determined an average slip rate of ~2.6–9.4 mm/year. These two sets of strike–slip faults intersect at an obtuse angle that ranges from 100° to 140° facing east and west; the fault sets define a conjugate strike–slip pattern that expresses internal E–W shortening in the northern part of the Chuan-Dian crustal fragment. These conjugate faults are interpreted to have experienced clockwise and counterclockwise rotations of up to 20°. The presence of this conjugate fault system demonstrates that this part of the Tibetan Plateau is undergoing not only southward movement, but also E–W shortening and N–S lengthening due to convergence between the Sichuan Basin and the eastern Himalayan syntaxis.  相似文献   
513.
《International Geology Review》2012,54(15):1776-1800
The northern and southern zones of the eastern Pontides (northeast Turkey) contain numerous plutons of varying ages and compositions. Geochemical and isotopic results on two Hercynian granitoid bodies located in the northern zone of the eastern Pontides allow a proper reconstruction of their origin for the first time. The intrusive rocks comprise four distinct bodies, two of which we investigated in detail. Based on LA–ICP–MS U–Pb zircon dating, the Derinoba and Kayadibi granites have similar 206Pb/238U versus 207Pb/235U Concordia ages of 311.1 ± 2.0 and 317.2 ± 3.5 million years for the former and 303.8 ± 1.5 million years for the latter. Aluminium saturation index values of both granites are between 0.95 and 1.35, indicating dominant peraluminous melt compositions. Both intrusions have high SiO2 (74–77 wt.%) contents and show high-K calc-alkaline and I- to S-type characteristics. Primitive mantle-normalized element diagrams display enrichment in K, Rb, Th, and U, and depletion in Ba, Nb, Ta, Sr, P, and Ti. Chondrite-normalized rare earth element patterns are characterized by concave-upward shapes and pronounced negative Eu anomalies with Lacn/Ybcn?=?4.6–9.7 and Eucn/Eu*?=?0.11–0.59 (Derinoba), and Lacn/Ybcn?=?2.7–5.5 and Eucn/Eu*?=?0.31–0.37 (Kayadibi). These features imply crystal-melt fractionation of plagioclase and K-feldspar without significant involvement of garnet. The Derinoba samples have initial ?Nd values between –6.1 and –7.1 with Nd model ages and T DM between 1.56 and 2.15 thousand million years. The Kayadibi samples show higher initial ?Nd(I) values, –4.5 to –6.2, with Nd model ages between 1.50 and 1.72 thousand million years. This study demonstrates that the Sr isotope ratios generally display negative correlation with Nd isotopes; Sr isotope ratios were lowered in some samples by hydrothermal interaction or alteration. Isotopic and petrological data suggest that both granites were produced by the partial melting of early Palaeozoic lower crustal rocks, with minor contribution from the mantle. Collectively, these rocks represent a late stage of Hercynian magmatism in the eastern Pontides.  相似文献   
514.
《International Geology Review》2012,54(15):1801-1828
We have investigated Mesozoic geological problems around the South China Sea (SCS) based on gravimetric, magnetic, seismic, and lithofacies data. Three-dimensional analytical signal amplitudes (ASA) of magnetic anomalies clearly define the inland tectonic boundaries and the residual Mesozoic basins offshore. The ASA suggest that the degree of magmatism and/or the average magnetic susceptibility of igneous rocks increase southeastwards and that late-stage A-type igneous rocks present along the coast of southeast China possess the highest effective susceptibility. The geophysical data define Mesozoic sedimentary and tectonic structures and reveal four major unconformities [Pz/T–J, T–J/J, J/K, and Mesozoic/Cenozoic (Pz, Palaeozic; T, Triassic; J, Jurassic; K, Cretaceous)], corresponding to regional tectonic events revealed by nine palaeogeographic time slices based on prior geological surveys and our new fieldwork. Showing both sedimentary and volcanic facies and regional faults, our palaeogeographic maps confirm an early Mesozoic northwestward-migrating orogeny that gradually obliterated the Tethyan regime, and a middle-to-late Mesozoic southeastward migration and younging in synchronized extension, faulting, and magmatism. Three major phases of marine deposition developed but were subsequently terminated by tectonic compression, uplift, erosion, faulting, rifting, and/or magmatism. The tectonic transition from the Tethyan to Pacific regimes was completed by the end of the Middle Triassic (ca. 220 Ma), reflecting widespread Mesozoic orogeny. The transition from an active to a passive continental margin occurred at the end of the Early Cretaceous (ca. 100 Ma); this was accompanied by significant changes in sedimentary environments, due likely to an eastward retreat of the palaeo-Pacific subduction zone and/or to the collision of the West Philippine block with Eurasia. The overall Mesozoic evolution of southeast China comprised almost an entire cycle of orogenic build-up, peneplanation, and later extension, all under the influence of the subducting palaeo-Pacific plate. Continental margin extension and rifting continued into the early Cenozoic, eventually triggering the Oligocene opening of the SCS.  相似文献   
515.
Slow–ultraslow spreading oceans are mostly floored by mantle peridotites and are typified by rifted continental margins, where subcontinental lithospheric mantle is preserved. Structural and petrologic investigations of the high-pressure (HP) Alpine Voltri Massif ophiolites, which were derived from the Late Jurassic Ligurian Tethys fossil slow–ultraslow spreading ocean, reveal the fate of the oceanic peridotites/serpentinites during subduction to depths involving eclogite-facies conditions, followed by exhumation.

The Ligurian Tethys was formed by continental extension within the Europe–Adria lithosphere and consisted of sea-floor exposed mantle peridotites with an uppermost layer of oceanic serpentinites and of subcontinental lithospheric mantle at the rifted continental margins. Plate convergence caused eastward subduction of the oceanic lithosphere of the Europe plate and the uppermost serpentinite layer of the subducting slab formed an antigorite serpentinite-subduction channel. Sectors of the rather unaltered mantle lithosphere of the Adria extended margin underwent ablative subduction and were detached, embedded, and buried to eclogite-facies conditions within the serpentinite-subduction channel. At such P–T conditions, antigorite serpentinites from the oceanic slab underwent partial HP dehydration (antigorite dewatering and growth of new olivine). Water fluxing from partial dehydration of host serpentinites caused partial HP hydration (growth of Ti-clinohumite and antigorite) of the subducted Adria margin peridotites. The serpentinite-subduction channel (future Beigua serpentinites), acting as a low-viscosity carrier for high-density subducted rocks, allowed rapid exhumation of the almost unaltered Adria peridotites (future Erro–Tobbio peridotites) and their emplacement into the Voltri Massif orogenic edifice. Over in the past 35 years, this unique geologic architecture has allowed us to investigate the pristine structural and compositional mantle features of the subcontinental Erro–Tobbio peridotites and to clarify the main steps of the pre-oceanic extensional, tectonic–magmatic history of the Europe–Adria asthenosphere–lithosphere system, which led to the formation of the Ligurian Tethys.

Our present knowledge of the Voltri Massif provides fundamental information for enhanced understanding, from a mantle perspective, of formation, subduction, and exhumation of oceanic and marginal lithosphere of slow–ultraslow spreading oceans.  相似文献   
516.
The Neogene–Quaternary Siderno Basin is located in the southern Calabrian Arc, along an E–W transect including the Ionian side and part of the Tyrrhenian margin. The orogenic belt was generated by ongoing northward subduction of Ionian oceanic lithosphere beginning in the Early Cretaceous. Since the Oligocene, the area has experienced complex tectonics, including NW–SE-oriented pull-apart basins. The forearc region contains >2000 m of Oligocene-to-Quaternary strata that cover pre-Tertiary rocks. The succession forms an E-dipping monocline, with tectonic growth structures increasing upward. Erosional truncations and thickness variations suggest a different evolution for the Siderno Basin, which in comparison with northern and southern parts of the Ionian accretionary wedge, evolved differently during the Serravallian–Tortonian stages. NW–SE and NE–SW fault systems are dominant, the first exhibiting strike–slip and normal kinematics in the Nicotera–Gioiosa and Molochio–Antonimina fault zones. These structures were active during infilling of the Neogene basin, and represent a complex transfer zone.

The NE–SW system shows two types of tectonic kinematics: (1) a compressive stage, with NW–SE-orientated shortening, responsible for inversion tectonics documented by east-verging folds, thrusts, and back-thrusts, and (2) emplacement of the variegated clay during the Langhian, which is related to back-thrust propagation. The strike–slip accommodated stress generated in the accretionary prism in response to subduction of Ionian lithosphere and progradation of the accretionary front of the Calabrian forearc.  相似文献   
517.
The Guerrero terrane comprises Middle Jurassic–Early Cretaceous arc successions that were accreted to the North American craton in the late Early Cretaceous, producing closure of the Arperos oceanic basin and the formation of an approximately 100 km-wide fold–thrust belt. Such a suture is key to investigating the structural evolution related to Guerrero terrane accretion and, in general, to arc–continent collisional zones. The Sierra de Guanajuato is an exposure of the Guerrero terrane suture belt and consists of a complex tectonic pile that formed through at least three major shortening phases: D1SG, D2SG, and D3SG (SG, Sierra de Guanajuato). During the D1SG and D2SG phases, the Upper Jurassic–Lower Cretaceous successions of the Arperos Basin piled up, forming a doubly vergent imbricate fan of thrust sheets that accommodated substantial NE–SW shortening. Mylonite microtextures, as well as syntectonic minerals, indicate that the D1SG and D2SG deformation events took place under low greenschist-facies metamorphic conditions. We relate these deformation phases to the progressive NE migration of the Guerrero terrane, which triggered the collapse and closure of the Arperos Basin. During D3SG, the El Paxtle arc assemblage of the Guerrero terrane was tectonically emplaced onto the previously deformed successions of the Arperos Basin. However, D3SG structures indicate that during this deformational stage, the main shortening direction was oriented NW–SE and that contraction was accommodated mostly by SE-vergent ductile thrusts formed under low greenschist-facies metamorphic conditions. We suggest that the top-to-the-SE emplacement of the El Paxtle assemblage may be a result of the tectonic escape of the arc produced by the continuous NE impingement of the Guerrero terrane during its collisional addition to the Mexican mainland.  相似文献   
518.
《International Geology Review》2012,54(12):1471-1489
The Plat Sjambok Anorthosite crops out near Prieska Copper Mines in the Namaqua–Natal Province of southern Africa. It is a massif-type anorthosite, previously regarded as a late-tectonic intrusion and part of the ca. 1100 Ma bimodal Keimoes Suite. Our new ion probe U–Pb zircon data show that the Plat Sjambok massif intruded at 1259 ± 5 Ma, before the 1220 Ma Namaqua collision events and is thus approximately 150 million years older than the Keimoes Suite. Despite the proximity to Prieska Mines, the anorthosite is located in the Kaaien Terrane close to the Brakbos Fault, which is the boundary with the Areachap Terrane in which Prieska Mines is situated. We dated the Nelspoortjie Tonalite, the main country rock of the Plat Sjambok Anorthosite, by laser ablation ICPMS at 1273 ± 13 Ma. Both intrusions thus originated concurrently with the 1286–1241 Ma volcanic rocks of the Areachap Group, which developed in a subduction-related arc setting, prior to its collision with the Kaaien Terrane and Kaapvaal Craton. Metamorphic zircon rims in the Plat Sjambok Anorthosite give an age of 1122 ± 7 Ma, a time that corresponds to a quiet period in the Areachap Terrane. We propose a tectonic model in which formation of the Nelspoortjie Tonalite and Plat Sjambok Anorthosite was driven by intrusions from the mantle into a back-arc related tensional environment within the Kaaien Terrane, possibly situated above an Archaean crustal tongue. This led to heating in a thickened crustal setting in which the tonalite originated as a partial melt of amphibolite. The anorthosite then formed as a mixture of mantle-derived gabbro and Archaean crustal rocks, which explains the 2100–2600 Ma zircon–Hf crustal residence ages and the Sm–Nd trend towards an old crustal source. The anorthosite and its country rocks were only juxtaposed with the Prieska Copper Mining District by late-tectonic uplift and transpressional movements on the Brakbos Fault towards the end of the Namaqua tectogenesis.  相似文献   
519.
《International Geology Review》2012,54(15):1835-1864
The Yinshan deposit is a large epithermal-porphyry polymetallic deposit, and the timing and petrogenesis of ore-hosting porphyries have been hotly debated. We present new results from geochemical, whole-rock Sr–Nd and zircon U–Pb–Hf–O isotopic investigations. Zircon U–Pb data demonstrate that the quartz porphyry, dacitic porphyry, and quartz dioritic porphyry formed at ?172.2 ± 0.4 Ma, ?171.7 ± 0.5 Ma, and ?170.9 ± 0.3 Ma, respectively. Inherited zircon cores show significant age spreads from ?730 to ?1390 Ma. Geochemically, they are high-K calc-alkaline or shoshonitic rocks with arc-like trace element patterns. They have similar whole-rock Nd and zircon Hf isotopic compositions, yet an increasing trend in ?Nd(t) and ?Hf(t) values typifies the suite. Older (inherited) zircons of the three porphyries display Hf compositions comparable to those of the Jiangnan Orogen basement rocks. In situ zircon oxygen isotopic analyses reveal that they have similar oxygen isotopic compositions, which are close to those of mantle zircons. Moreover, a decreasing trend of δ18O values is present. We propose that the ore-related porphyries of the Yinshan deposit were emplaced contemporaneously and derived from partial melting of Neoproterozoic arc-derived mafic (or ultra-mafic) rocks. Modelling suggests that the quartz porphyries, dacitic porphyries, and quartz dioritic porphyries experienced ?25%, ?10%, and ?10% crustal contaminations by Shuangqiaoshan rocks. Our study provides important constraints on mantle–crust interaction in the genesis of polymetallic mineralization associated with Mesozoic magmatism in southeastern China.  相似文献   
520.
Granitoid plutons are often difficult to radiometrically date precisely due to the possible effects of protracted and complex magmatic evolution, crustal inheritance, and/or partial re-setting of radiogenic clocks. However, apart from natural/geological issues, methodological and analytical problems may also contribute to blurring geochronological data. This may be exemplified by the Variscan Karkonosze Pluton (SW Poland). High-precision chemical abrasion (CA) ID-TIMS zircon data indicate that the two main rock types, porphyritic and equigranular, of this igneous body were both emplaced at ca. 312 Ma, while field evidence points to a younger age for the latter. This is in contrast to the earlier reported SIMS (SHRIMP) zircon dates that scattered mainly between ca. 322 and 302 Ma. In an attempt to overcome this dispersion, at least in part caused by radiogenic lead loss, the CA technique was used before SHRIMP analysis. The 206Pb/238U age obtained in this way from a sample of porphyritic granite is 322 ± 3 Ma, ~16 Ma older than the untreated zircons; another porphyritic sample yielded a mean age of 319 ± 3 Ma, and the mean age was 318 ± 4 Ma for an equigranular granite sample – all three somewhat older than the age obtained by ID-TIMS. Older SIMS dates of ca. 318–322 Ma might indicate either faint inheritance or that zircon domains crystallized during earlier stages of Karkonosze igneous evolution. The ID-TIMS results have been used to re-assess the whole-rock Rb–Sr data. Excluding a porphyritic granite with excess radiogenic 87Sr, it appears that isotopic homogeneity was achieved for most samples during the 312 Ma event, as shown by a pooled 21-point isochron with an age of 311 ± 3 Ma and an initial 86Sr/86Sr of 0.7067 ± 4. Local crustal contamination by stopping of metapelitic material might account for the more radiogenic Sr isotope signature observed in biotite-rich schlieren. A critical re-evaluation of all available SHRIMP data using the ID-TIMS age of 312 Ma as a benchmark suggests that the observed scatter may be partly attributed to analytical and methodological problems, in particular failing to distinguish subtly discordant spots from truly concordant ones, which is a serious limitation of the microbeam analytical approach. Other likely pitfalls contributing to geochronological scatter are identified in the published Re–Os ages on molybdenite and the 40Ar/39Ar data on micas. A scenario postulating a 15–20 milliion year evolution of the Karkonosze Pluton cannot be established on the basis of available geochronological data, which rather supports a brief igneous event, although a more protracted pre-emplacement evolution is possible. A short timescale for crystallization of large igneous bodies, as suggested by the ID-TIMS data from the Karkonosze Granite, is in line with models of transport of granitic magmas through dikes to form large plutons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号