首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2698篇
  免费   190篇
  国内免费   340篇
测绘学   150篇
大气科学   180篇
地球物理   690篇
地质学   1528篇
海洋学   221篇
天文学   45篇
综合类   122篇
自然地理   292篇
  2024年   18篇
  2023年   50篇
  2022年   86篇
  2021年   104篇
  2020年   204篇
  2019年   140篇
  2018年   159篇
  2017年   213篇
  2016年   160篇
  2015年   179篇
  2014年   285篇
  2013年   420篇
  2012年   272篇
  2011年   54篇
  2010年   73篇
  2009年   77篇
  2008年   53篇
  2007年   66篇
  2006年   69篇
  2005年   50篇
  2004年   64篇
  2003年   48篇
  2002年   76篇
  2001年   54篇
  2000年   33篇
  1999年   44篇
  1998年   26篇
  1997年   17篇
  1996年   21篇
  1995年   24篇
  1994年   18篇
  1993年   8篇
  1992年   14篇
  1991年   9篇
  1990年   6篇
  1989年   10篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1976年   1篇
排序方式: 共有3228条查询结果,搜索用时 765 毫秒
341.
342.
《China Geology》2020,3(4):591-601
The Sichuan Basin is one of the vital basins in China, boasting abundant hydrocarbon reservoirs. To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify the regional dynamic background of different tectonic movements in the Sichuan Basin and its adjacent areas, the characteristics of the acoustic emission in rocks in different strata of these areas were researched in this paper. Meanwhile, the tectonic stress magnitude in these areas since the Mesozoic was restored. The laws state that the tectonic stress varied with depth was revealed, followed by the discussion of the influence of structural stress intensity on structural patterns in different tectonic episodes. These were conducted based on the paleostress measurement by acoustic emission method and the inversion principle of the stress fields in ancient periods and the present, as well as previous research achievements. The results of this paper demonstrate that the third episode of Yanshanian Movement (Yanshanian III) had the maximum activity intensity and tremendously influenced the structural pattern in the study area. The maximum horizontal principal stress of Yanshanian III varied with depth as follows: 0.0168 x + 37.001 (MPa), R2 = 0.8891. The regional structural fractures were mainly formed in Yanshanian III in Xujiahe Formation, west Sichuan Basin, of which the maximum paleoprincipal stress ranging from 85.1 MPa to 120.1 MPa. In addition, the law stating the present maximum horizontal principal stress varies with depth was determined to be 0.0159 x+10.221 (MPa), R2=0.7868 in Wuling Mountain area. Meanwhile, it was determined to be 0.0221 x+9.4733 (MPa), R2=0.9121 in the western part of Xuefeng Mountain area and 0.0174 x+10.247 (MPa), R2=0.8064 in the whole study area. These research results will not only provide data for the simulation of stress field, the evaluation of deformation degree, and the prediction of structural fractures, but also offer absolute geological scientific bases for the elevation of favorable shale gas preservation.  相似文献   
343.
自20世纪80年代以来,临沂市城区一带发生多起岩溶塌陷,这些岩溶塌陷发生具有突发性、重复性,其分布具有一定的规律性;其形成原因一方面取决于该区具备岩溶塌陷形成的物质基础条件,另一方面取决于水动力条件的改变,而水动力条件的改变主要是由于城区地下水不合理开采造成的。  相似文献   
344.
I. IORGULESCU  A. MUSY 《水文研究》1997,11(9):1353-1355
A generalization of the TOPMODEL equations for a power law vertical profile of hydraulic conductivity is introduced. The exponential profile of TOPMODEL is obtained as a limit case of the new general form. © 1997 John Wiley & Sons, Ltd.  相似文献   
345.
Multiple ridges across prograding coasts may display variable geometries, commonly expressed through varying elevations. Changes in ridge elevation have been traditionally related to the occurrence of fluctuating progradation rates, which might, in turn, be driven by shifting environmental conditions. Here, we explore the geometry and growth mechanisms of multiple ridges, generated at Barreta Island (Ria Formosa, southern Portugal), as a consequence of the rapid progradation of the island over the last 70 years, following the artificial fixation of the downdrift Faro-Olhão inlet with jetties in 1955. The variability in the morphology of these features was analysed in combination with available wind and wave data, in order to better distinguish growth mechanisms and understand the main parameters determining the final geometry of the observed ridges. The results suggest that (1) most of the identified ridges fall in the beach ridge classification, as they have been mostly built by marine processes, and (2) the parameters derived from, or closely related to wave climate variability (e.g. progradation rates, storm occurrence) can jointly explain most of the observed morphological changes, while aeolian processes played a secondary role. Indeed, ridge geometry appears mainly controlled by progradation rates, with higher ridges associated with lower progradation rates. Progradation rate, in turn, is mostly related to longshore wave power, storminess, and the occurrence storm groups. Yet, the final configuration of ridges can also be affected by runup levels and onshore winds. Therefore, establishing the relation between ridge geometry and wave climate is not a straightforward task, because of the complex processes and interactions that control coastal morphodynamics. © 2019 John Wiley & Sons, Ltd.  相似文献   
346.
To investigate the seismic response of a pile group during liquefaction, shaking table tests on a 1/25 scale model of a 2 × 2 pile group were conducted, which were pilot tests of a test project of a scale-model offshore wind turbine with jacket foundation. A large laminar shear box was utilized as the soil container to prepare a liquefiable sandy ground specimen. The pile group model comprising four slender aluminum piles with their pile heads connected by a rigid frame was designed with similitude considerations focusing on soil–pile interaction. The input motions were 2-Hz sinusoids with various acceleration amplitudes. The excess pore water pressure generation indicated that the upper half of the ground specimen reached initial liquefaction under the 50-gal-amplitude excitation, whereas in the 75-gal-amplitude test, almost entire ground was liquefied. Accelerations in soil, on the movable frames composing the laminar boundary of the shear box, and along the pile showed limited difference at the same elevation before liquefaction. After liquefaction, the soil and the movable-frame accelerations that represented the ground response considerably reduced, whereas both the movable frames and the piles exhibited high-frequency jitters other than 2-Hz sinusoid, and meantime, remarkable phase difference between the responses of the pile group and the ground was observed, all probably due to the substantial degradation of liquefied soil. Axial strains along the pile implied its double-curvature bending behavior, and the accordingly calculated moment declined significantly after liquefaction. These observations demonstrated the interaction between soil and piles during liquefaction.  相似文献   
347.
Understanding the hydrologic connectivity between kettle holes and shallow groundwater, particularly in reaction to the highly variable local meteorological conditions, is of paramount importance for tracing water in a hydro(geo)logically complex landscape and thus for integrated water resource management. This article is aimed at identifying the dominant hydrological processes affecting the kettle holes' water balance and their interactions with the shallow groundwater domain in the Uckermark region, located in the north-east of Germany. For this reason, based on the stable isotopes of oxygen (δ18O ) and hydrogen (δ2H ), an isotopic mass balance model was employed to compute the evaporative loss of water from the kettle holes from February to August 2017. Results demonstrated that shallow groundwater inflow may play the pivotal role in the processes taking part in the hydrology of the kettle holes in the Uckermark region. Based on the calculated evaporation/inflow (E/I) ratios, most of the kettle holes (86.7%) were ascertained to have a partially open, flow-through-dominated system. Moreover, we identified an inverse correlation between E/I ratios and the altitudes of the kettle holes. The same holds for electrical conductivity (EC) and the altitudes of the kettle holes. In accordance with the findings obtained from this study, a conceptual model explaining the interaction between the shallow groundwater and the kettle holes of Uckermark was developed. The model exhibited that across the highest altitudes, the recharge kettle holes are dominant, where a lower ratio of E/I and a lower EC was detected. By contrast, the lowest topographical depressions represent the discharge kettle holes, where a higher ratio of E/I and EC could be identified. The kettle holes existing in between were categorized as flow-through kettle holes through which the recharge takes place from one side and discharge from the other side.  相似文献   
348.
Traditional coherence algorithms are often based on the assumption that seismic traces are stationary and Gaussian. However, seismic traces are actually non-stationary and non-Gaussian. A constant time window and the canonical correlation analysis in traditional coherence algorithms are not optimal for non-stationary seismic traces and cannot describe the similarity between adjacent seismic traces in detail. To overcome this problem, a new coherence algorithm using the high-resolution time–time transform and the feature matrix is designed. The high-resolution time–time transform used to replace the constant time window can produce a frequency-dependent time local series to analyse non-stationary seismic traces. The feature matrix, constructed by the frequency-dependent time local series and the related local gradients, defines a new correlation metric that enhances more details of the geological discontinuities in seismic images than does the canonical correlation analysis. Additionally, the Riemannian metric is introduced for related calculations because the feature matrices are not defined in a Euclidean space but rather in a manifold space. Application to field data illustrates that the proposed method reveals more details of structural and stratigraphic features.  相似文献   
349.
Inspired by the idea of the iterative time–frequency peak filtering, which applies time–frequency peak filtering several times to improve the ability of random noise reduction, this article proposes a new cascading filter implemented using mathematic morphological filtering and the time–frequency peak filtering, which we call here morphological time–frequency peak filtering for convenience. This new method will be used mainly for seismic signal enhancement and random noise reduction in which the advantages of the morphological algorithm in processing nonlinear signals and the time–frequency peak filtering in processing nonstationary signals are utilized. Structurally, the scheme of the proposed method adopts mathematic morphological operation to first preprocess the signal and then applies the time–frequency peak filtering method to ultimately extract the valid signal. Through experiments on synthetic seismic signals and field seismic data, this paper demonstrates that the morphological time–frequency peak filtering method is superior to the time–frequency peak filtering method and its iterative form in terms of valid signal enhancement and random noise reduction.  相似文献   
350.
Sandy-muddy transitional beaches (SMT-Beaches), representing the transition from sandy beaches to tidal mudflats, should theoretically develop very different morphological and sedimentological characteristics in river estuaries and in semi-enclosed bays due to their contrasting dynamic sedimentary environments. Evidence, however, is rare in the scientific literature. To reveal these morphological and sedimentary differences, the sand–mud transition (SMT) boundary distribution, beach profiles, and surface and downcore sediment grain-size compositions of 27 SMT-Beaches located along mesotidal to macrotidal coasts of the western Taiwan Strait, southeastern China, were investigated. The results show that typical estuarine SMT-Beaches are mainly characterized by an ambiguous SMT, a long distance between the SMT and the coastline (31–302 m), lower SMT and inflection point altitudes (average –0.76 m and –0.04 m), and lower upper beach gradients (~0.068) with fine sand. Estuarine SMT-Beach sediments display clear interbedded mud and sand layers, implying potential SMT migrations over various timescales. By contrast, typical bay SMT-Beaches are characterized by distinct SMT, a short distance between the SMT and the coastline (11–52 m), higher SMT and inflection point altitudes (~0.24 m and ~0.35 m), and narrower upper beaches with higher gradients (~0.095) and coarse sand. Bay SMT-Beaches present relatively stable sedimentary sequences and a narrow gravel belt surrounding the inflection point and/or SMT. These morphological and sedimentary differences between the two SMT-Beach types are initially constrained by sediment supply and transport and are further affected by tide conditions and wave climate. Sediment supply and transport predominately control the sediment structures, while the tidal range strongly influences spatial variations in SMT distances. Wave climate normally drives SMT altitude variations. This study highlights the morphological and sedimentary differences in SMT-Beaches in estuaries and bays, providing important knowledge for further revealing their morphodynamic processes and potential future nourishment. © 2020 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号