首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1577篇
  免费   260篇
  国内免费   307篇
测绘学   59篇
大气科学   161篇
地球物理   416篇
地质学   782篇
海洋学   153篇
天文学   178篇
综合类   87篇
自然地理   308篇
  2024年   10篇
  2023年   24篇
  2022年   58篇
  2021年   62篇
  2020年   68篇
  2019年   69篇
  2018年   64篇
  2017年   76篇
  2016年   64篇
  2015年   76篇
  2014年   83篇
  2013年   100篇
  2012年   103篇
  2011年   84篇
  2010年   75篇
  2009年   93篇
  2008年   97篇
  2007年   117篇
  2006年   92篇
  2005年   94篇
  2004年   71篇
  2003年   69篇
  2002年   77篇
  2001年   37篇
  2000年   59篇
  1999年   35篇
  1998年   46篇
  1997年   34篇
  1996年   34篇
  1995年   25篇
  1994年   26篇
  1993年   14篇
  1992年   19篇
  1991年   11篇
  1990年   11篇
  1989年   12篇
  1988年   8篇
  1987年   11篇
  1986年   8篇
  1985年   7篇
  1984年   6篇
  1982年   8篇
  1981年   2篇
  1978年   4篇
  1954年   1篇
排序方式: 共有2144条查询结果,搜索用时 31 毫秒
61.
Iodine enrichment in the Atacama Desert of northern Chile is widespread and varies significantly between reservoirs, including nitrate-rich “caliche” soils, supergene Cu deposits and marine sedimentary rocks. Recent studies have suggested that groundwater has played a key role in the remobilization, transport and deposition of iodine in Atacama over scales of millions-of-years. However, and considering that natural waters are also anomalously enriched in iodine in the region, the relative source contributions of iodine in the waters and its extent of mixing remain unconstrained. In this study we provide new halogen data and isotopic ratios of iodine (129I/I) in shallow seawater, rivers, salt lakes, cold and thermal spring water, rainwater and groundwater that help to constrain the relative influence of meteoric, marine and crustal sources in the Atacama waters. Iodine concentrations in surface and ground waters range between 0.35 μM and 26 μM in the Tarapacá region and between 0.25 μM and 48 μM in the Antofagasta region, and show strong enrichment when compared with seawater concentrations (I = ∼0.4 μM). In contrast, no bromine enrichment is detected (1.3–45.7 μM for Tarapacá and 1.7–87.4 μM for Antofagasta) relative to seawater (Br = ∼600 μM). These data, coupled to the high I/Cl and low Br/Cl ratios are indicative of an organic-rich sedimentary source (related with an “initial” fluid) that interacted with meteoric water to produce a mixed fluid, and preclude an exclusively seawater origin for iodine in Atacama natural waters. Iodine isotopic ratios (129I/I) are consistent with halogen chemistry and confirm that most of the iodine present in natural waters derives from a deep initial fluid source (i.e., groundwater which has interacted with Jurassic marine basement), with variable influence of at least one atmospheric or meteoric source. Samples with the lowest isotopic ratios (129I/I from ∼215 to ∼1000 × 10−15) strongly suggest mixing between the groundwater and iodine storage in organic-rich rocks (with variable influence of volcanic fluids) and pre-anthropogenic meteoric water, while samples with higher values (∼2000–93,700 × 10−15) indicate the input of anthropogenic meteoric fluid. Taking into account the geological, hydrologic and climatic features of the Atacama region, we propose that the mean contribution of anthropogenic 129I is associated with 129I releases during nuclear weapon tests carried out in the central Pacific Ocean until the mid 1990's (129I/I = ∼12,000 × 10−15). This source reflects rapid redistribution of this radioisotope on a global scale. Our results support the notion of a long-lived continental iodine cycle in the hyperarid margin of western South America, which is driven by local hydrological and climate conditions, and confirm that groundwater was a key agent for iodine remobilization and formation of the extensive iodine-rich soils of Atacama.  相似文献   
62.
63.
Bulk mineral resources of iron ores, copper ores, bauxite, lead ores, zinc ores and potassium salt play a pivotal role on the world’s and China’s economic development. This study analyzed and predicted their resources base and potential, development and utilization and their world’s and China’s supply and demand situation in the future 20 years. The supply and demand of these six bulk mineral products are generally balanced, with a slight surplus, which will guarantee the stability of the international mineral commodity market supply. The six mineral resources(especially iron ores and copper ores) are abundant and have a great potential, and their development and utilization scale will gradually increase. Till the end of 2014, the reserveproduction ratio of iron, copper, bauxite, lead, zinc ores and potassium salt was 95 years, 42 years, 100 years, 17 years, 37 years and 170 years, respectively. Except lead ores, the other five types all have reserve-production ratio exceeding 20 years, indicative of a high resources guarantee degree. If the utilization of recycled metals is counted in, the supply of the world’s six mineral products will exceed the demand in the future twenty years. In 2015–2035, the supply of iron ores, refined copper, primary aluminum, refined lead, zinc and potassium salt will exceed their demand by 0.4–0.7 billion tons(Gt), 5.0–6.0 million tons(Mt), 1.1–8.9 Mt, 1.0–2.0 Mt, 1.2–2.0 Mt and 4.8–5.6 Mt, respectively. It is predicted that there is no problem with the supply side of bulk mineral products such as iron ores, but local or structural shortage may occur because of geopolitics, monopoly control, resources nationalism and trade friction. Affected by China’s compressed industrialized development model, the demand of iron ores(crude steel), potassium salt, refined lead, refined copper, bauxite(primary aluminum) and zinc will gradually reach their peak in advance. The demand peak of iron ores(crude steel) will reach around 2015, 2016 for potassium salt, 2020 for refined lead, 2021 for bauxite(primary aluminum), 2022 for refined copper and 2023 for zinc. China’s demand for iron ores(crude steel), bauxite(primary aluminum) and zinc in the future 20 years will decline among the world’s demand, while that for refined copper, refined lead and potassium salt will slightly increase. The demand for bulk mineral products still remains high. In 2015–2035, China’s accumulative demand for iron ores(crude steel) will be 20.313 Gt(13.429 Gt), 0.304 Gt for refined copper, 2.466 Gt(0.616 Gt) of bauxite(primary aluminum), 0.102 Gt of refined lead, 0.138 Gt of zinc and 0.157 Gt of potassium salt, and they account for the world’s YOY(YOY) accumulative demand of 35.17%, 51.09%, 48.47%, 46.62%, 43.95% and 21.84%, respectively. This proportion is 49.40%, 102.52%, 87.44%, 105.65%, 93.62% and 106.49% of that in 2014, respectively. From the supply side of China’s bulk mineral resources, it is forecasted that the accumulative supply of primary(mine) mineral products in 2015–2035 is 4.046 Gt of iron ores, 0.591 Gt of copper,1.129 Gt of bauxite, 63.661 Mt of(mine) lead, 0.109 Gt of(mine) zinc and 0.128 Gt of potassium salt, which accounts for 8.82%, 13.92%, 26.67%, 47.09%, 33.04% and 15.56% of the world’s predicted YOY production, respectively. With the rapid increase in the smelting capacity of iron and steel and alumina, the rate of capacity utilization for crude steel, refined copper, alumina, primary aluminum and refined lead in 2014 was 72.13%, 83.63%, 74.45%, 70.76% and 72.22%, respectively. During 2000–2014, the rate of capacity utilization for China’s crude steel and refined copper showed a generally fluctuating decrease, which leads to an insufficient supply of primary mineral products. It is forecasted that the supply insufficiency of iron ores in 2015–2035 is 17.44 Gt, 0.245 Gt of copper in copper concentrates, 1.337 Gt of bauxite, 38.44 Mt of lead in lead concentrates and 29.19 Mt of zinc in zinc concentrates. China has gradually raised the utilization of recycled metals, which has mitigated the insufficient supply of primary metal products to some extent. It is forecasted that in 2015–2035 the accumulative utilization amount of steel scrap(iron ores) is 3.27 Gt(5.08 Gt), 70.312 Mt of recycled copper, 0.2 Gt of recycled aluminum, 48 Mt of recycled lead and 7.7 Mt of recycled zinc. The analysis on the supply and demand situation of China’s bulk mineral resources in 2015–2035 suggests that the supply-demand contradiction for these six types of mineral products will decrease, indicative of a generally declining external dependency. If the use of recycled metal amount is counted in, the external dependency of China’s iron, copper, bauxite, lead, zinc and potassium salt will be 79%, 65%, 26%, 8%, 16% and 18% in 2014, respectively. It is predicted that this external dependency will decrease to 62%, 64%, 20%,-0.93%, 16% and 14% in 2020, respectively, showing an overall decreasing trend. We propose the following suggestions correspondingly.(1) The demand peak of China’s crude steel and potassium salt will reach during 2015–2023 in succession. Mining transformation should be planned and deployed in advance to deal with the arrival of this demand peak.(2) The supply-demand contradiction of China’s bulk mineral resources will mitigate in the future 20 years, and the external dependency will decrease accordingly. It is suggested to adjust the mineral resources management policies according to different minerals and regions, and regulate the exploration and development activities.(3) China should further establish and improve the forced mechanism of resolving the smelting overcapacity of steel, refined copper, primary aluminum, lead and zinc to really achieve the goal of "reducing excess production capacity".(4) In accordance with the national strategic deployment of "One Belt One Road", China should encourage the excess capacity of steel, copper, alumina and primary aluminum enterprises to transfer to those countries or areas with abundant resources, high energy matching degree and relatively excellent infrastructure. Based on the national conditions, mining condition and geopolitics of the resources countries, we will gradually build steel, copper, aluminum and lead-zinc smelting bases, and potash processing and production bases, which will promote the excess capacity to transfer to the overseas orderly.(5) It is proposed to strengthen the planning and management of renewable resources recycling and to construct industrial base of renewable metal recycling.(6) China should promote the comprehensive development and utilization of paragenetic and associated mineral species to further improve the comprehensive utilization of bulk mineral resources.  相似文献   
64.
张光辉  李卓  严明疆  王茜  王威 《地球学报》2016,37(5):637-644
针对冀中平原深部地下热水资源可更新性问题,以辛集馆陶组地下热水系统为例,采用相同开采强度下地下热水位降幅异常变化的识别方法,通过2000年以来该地下热水位年际及月际降幅与开采量和上游山区年降水量之间响应变化特征研究,结果表明:(1)冀中平原辛集地区馆陶组地下热水资源具有一定的可更新能力,与上游山区年降水量变化相关,还与地下水位埋深、当年开采引起的水位降幅大小和开采疏干层位砾粗砂岩及细砂岩占比状况有关;(2)辛集地区馆陶组地下热水大规模开采,是该地下水系统获得上游区侧向流入补给的必要条件,属于开采激发型补给,更新补给的资源数量有限;(3)从2000年以来该区地下热水水位动态变化趋势来看,目前该区地下热水资源已处于超采状态,需要压采或人工回灌增大补给,否则难以可持续开发利用。  相似文献   
65.
The geologic positions and geochemical and isotope parameters of the Ordovician-early Silurian and Early-Middle Devonian continuous volcanic series of the Minusa basin and its mountainous framing are compared. Both series are composed mostly of moderately alkaline rocks with variations in SiO2 contents from 45 to 77 wt.%. The Ordovician-early Silurian series differs from the Early-Middle Devonian one in lower contents of TiO2 (< 1.7 wt.%) and Fe2O3tot and higher contents of Al2O3 in all rock varieties and in the more fractionated REE patterns of trachybasalts. The compositions of both series reflect two simultaneous mechanisms of magma evolution. The main process was fractional crystallization leading to the formation of rocks from trachybasalts to trachyrhyodacites. The accessory mechanism was the contamination of fractionated melts by crustal material, anatectic melting of crust, and mixing of deep-seated magmas with crustal melts. These processes had specifics at each stage and were controlled by the composition of the sources of parental melts. Their geochemical and isotopic parameters (high alkalinity, high contents of lithophile elements, negative anomalies of Nb, Ta, and Ti, and enrichment in radiogenic Sr) point to the interaction of mantle plumes with the lithospheric mantle that was metasomatically transformed during the preceding Vendian-early Cambrian subduction processes.  相似文献   
66.
《Sedimentology》2018,65(4):1378-1389
Models relating sediment supply to catchment properties are important in order to use the geological record to deduce landscape evolution and interplay between tectonics and climate. Water discharge (Q w) is an important factor in the widely used ‘BQART ’ model, which relates sediment load to a set of measurable catchment parameters. Although many of the factors in this equation may be independently estimated with some degree of certainty in ancient systems, water discharge (Q w) certainly cannot. An analysis of a world database of modern catchments with 1255 entries shows that the commonly applied equation relating catchment area (A ) to water discharge (Q w = 0·075A0·8) does not predict water discharge from catchment area well in many cases (R 2 = 0·5 and an error spanning about three orders of magnitude). This is because the method does not incorporate the effect of arid and wet climate on river water discharge. The inclusion of climate data into such estimations is an opportunity to refine these estimates, because generalized estimates of palaeoclimate can often be deduced on the basis of sedimentological data such as palaeosol types, mineralogy and palaeohydraulics. This paper investigates how the relationship between catchment area and river discharge varies with four runoff categories (arid, semi‐arid, humid and wet), which are recognizable in the geological record, and modifies the coefficient and exponent of the above‐mentioned equation according to these classes. This modified model yields improved results in relating discharge to catchment area (R 2 = 0·95 and error spanning one order of magnitude) when core, outcrop or regional palaeoclimate reconstruction data are available in non‐arid systems. Arid systems have an inherently variable water discharge, and catchment area is less important as a control due to downstream losses. The model here is sufficient for many geological applications and makes it possible to include variations in catchment humidity in mass‐flux estimates in ancient settings.  相似文献   
67.
北方集中供热系统气象风险评估初探   总被引:1,自引:0,他引:1  
陈莉  李帅 《冰川冻土》2018,40(6):1285-1290
供热管网爆裂、跑冒滴漏是北方集中供热城市面临的常见问题,供热管网出现大型故障往往是在室外寒冷的隆冬时节,如果间断或限额供热时间过长,将会造成严重的社会和经济影响。同时在极端低温情况下,可能会造成热源供应不足,出现限额供热现象,不能保证室内舒适度,影响人们的正常生活。本文提出了能源供应气象风险评估和热网维修寒冷风险评估方法,并进行了案例评估,以期为未来进行相关风险评估提供参考。  相似文献   
68.
城市地下供水管破损漏水检测,一般使用听音工具和设备来进行,这种需要漏水点传出声音的检测方式,效果往往并不理想。使用一种新的检测方法,无需利用声音,而是通过供水管漏水造成地层电性变化这一特征,使用小极距高密度电法查明管道漏水点位置。该检测方式不仅解决了常规方法难以查明的供水管漏水问题,而且拓展了小极距高密度电法的应用空间。  相似文献   
69.
本研究对湘江下游河床沉积物进行了元素地球化学分析,在认识沉积物元素地球化学特征、甄别人为源与自然源重金属的基础上,估算了沉积物的元素地球化学背景值。结果表明:SiO2、TiO2、Al2O3、Fe2O3、K2O等主量元素及V、Co、Cr、Ba、Sc、U、Sr、Ga、Ge、Rb、Nb、Y、REE等微量元素在沉积物中含量变化相对稳定(Cv<0.2),分布相对均匀,且富集不明显(EF<2.0,Sr明显亏损)。而MnO、MgO、CaO、Na2O、P2O5等主量元素,及Cd、Mn、Cu、Pb、Zn等重金属在沉积物中含量变化大(Cv>0.25),分布极不均匀,且沉积物中重金属明显富集(EF>2.0)。主成分及Pearson线性相关性分析显示,沉积物中不明显富集的微量元素主要赋存于难溶硅酸盐矿物相中,为自然源元素。而沉积物中显著富集的重金属主要赋存于铁—锰氧化物等矿物相中,为有人为源叠加的元素。故针对不同来源特征的元素用不同的方法进行了背景值计算,求得沉积物中47个元素的背景值。再利用元素比值等方法对所得背景值进行检验。结果表明,本文得到的湘江沉积物元素背景值合理,可用作流域沉积物重金属污染评价参考。  相似文献   
70.
针对供配电系统容易发生的安全隐患,优化设计配电系统结构、采用一体化运维监控平台和采用高质量、高可靠性的设备,消除单点故障瓶颈,确保在停电、设备故障、维修维护等各种情况下提供不中断或快速恢复供电,避免停电对业务正常运行造成影响,确保机房供电安全。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号