首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5064篇
  免费   754篇
  国内免费   1491篇
测绘学   137篇
大气科学   507篇
地球物理   1740篇
地质学   3416篇
海洋学   763篇
天文学   76篇
综合类   197篇
自然地理   473篇
  2024年   37篇
  2023年   102篇
  2022年   191篇
  2021年   188篇
  2020年   221篇
  2019年   262篇
  2018年   222篇
  2017年   233篇
  2016年   238篇
  2015年   249篇
  2014年   275篇
  2013年   325篇
  2012年   311篇
  2011年   283篇
  2010年   303篇
  2009年   365篇
  2008年   372篇
  2007年   341篇
  2006年   346篇
  2005年   295篇
  2004年   286篇
  2003年   256篇
  2002年   183篇
  2001年   201篇
  2000年   185篇
  1999年   183篇
  1998年   197篇
  1997年   134篇
  1996年   138篇
  1995年   90篇
  1994年   58篇
  1993年   59篇
  1992年   48篇
  1991年   27篇
  1990年   26篇
  1989年   17篇
  1988年   6篇
  1987年   16篇
  1986年   9篇
  1985年   9篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有7309条查询结果,搜索用时 15 毫秒
81.
曹飞凤  赵西增 《海洋工程》2015,29(6):807-820
Floating structures are commonly seen in coastal and offshore engineering. They are often subjected to extreme waves and, therefore, their nonlinear dynamic behaviors are of great concern. In this paper, an in-house CFD code is developed to investigate the accurate prediction of nonlinear dynamic behaviors of a two-dimensional (2-D) box-shaped floating structure in focused waves. Computations are performed by an enhanced Constrained Interpolation Profile (CIP)-based Cartesian grid model, in which a more accurate VOF (Volume of Fluid) method, the THINC/SW scheme (THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A focusing wave theory is used for the focused wave generation. The wave component of constant steepness is chosen. Comparisons between predictions and physical measurements show good agreement including body motions and free surface profiles. Although the overall agreement is good, some discrepancies are observed for impact pressure on the superstructure due to water on deck. The effect of grid resolution on the results is checked. With a fine grid, no obvious improvement is seen in the global body motions and impact pressures due to water on deck. It is concluded that highly nonlinear phenomena, such as distorted free surface, large-amplitude body motions, and violent impact flow, have been predicted successfully.  相似文献   
82.
The reliability and/or stability of the lifeline structures against failure under seismic loads are of critical concern, and must be studied carefully. Therefore, the main objective of this paper is to demonstrate the commonly encountered backfill effects on the dynamic response of rectangular tanks. However, only the exterior wall of the tank which interacts with both the backfill and fluid is tackled, as each part of the structure shows considerable differences in terms of both the load bearing mechanisms and the geometrical and positional differences. Finite element analyses are employed, taking into consideration the fluid-wall-backfill interaction. The analyses are conducted to observe whether or not both backfill and wall behavior can be affected by variation of the internal friction angle. For that purpose, some comparisons are made on vertical displacements of the backfill, roof displacements, stress responses, etc., by means of internal friction angle variations of the backfill from 25° to 40°. Consequently, it is observed that the variations on maximum vertical displacements are affected considerably. In contrast, the maximum stress responses are affected partially. However, the inertial effects of the backfill show that pseudo-static approximations may be insufficient to understand the dynamic behavior of the backfill-wall-fluid system.  相似文献   
83.
Many studies have tackled the problem of vortex-induced vibrations (VIV) of a vertical riser with a constant tension and placed in uniform currents. In this study, attention is focused on the cross-flow VIV modelling, time-domain analysis and prediction of variable-tension vertical risers in linearly sheared currents. The partial-differential equation governing the riser transverse motion is based on a flexural tensioned-beam model with typical pinned-pinned supports. The hydrodynamic excitation model describing the modulation of lift force is based on a distributed van der Pol wake oscillator whose nonlinear equation is also partial-differential due to the implementation of a diffusion term. The variation of empirical wake coefficients with system parameters and the water depth-dependent Reynolds number is introduced. Based on the assumed Fourier mode shape functions obtained by accounting for the effect of non-uniform tension, the Galerkin technique is utilized to construct a low-dimensional multi-mode model governing the coupled fluid-riser interaction system due to VIV. Numerical simulations in the case of varying sheared flow profiles are carried out to systematically evaluate riser nonlinear dynamics and highlight the influence of fluid-structure parameters along with associated VIV aspects. In particular, the effects of shear and tensioned-beam (tension versus bending) parameters are underlined. Some comparisons with published experimental results and observations are qualitatively and quantitatively discussed. Overall parametric analysis and prediction results may be worthwhile for being a new benchmark against future experimental testing and/or numerical results predicted by an alternative model and methodology.  相似文献   
84.
南海陆坡天然气水合物成藏的构造环境   总被引:36,自引:4,他引:36  
南海是西太平洋最大的边缘海之一,其复杂的构造演化,形成了构造特征迥异的南海陆缘,有利于天然气水合物的发育,南海地区在中中新统以上发育了上中新统,上新统和第四系3套地层,3套地层所对应的地质时期的沉降速率在纵横向上的差别均较为悬殊,总体而言,南海第四纪整体沉降速率较大,为天然气水合物压力场环境的形成提供了有利条件,南海复杂的构造背景形成了丰富多彩的构造地质体,特定的构造地质体与水合物形成关系密切,这里讨论了滑塌体、泥底辟、增生楔等构造地质体在南海的分布情况,分析了上述构造体与气体水合物地震标志BSR之间的关系,以及特殊构造带在南海的展布规律,提出了特殊的造带中天然气水合物的成藏模式。  相似文献   
85.
Wave-induced instability of seabed may cause damage to coastal and offshore structures. This issue has been investigated mostly for mildly sloping (<5°) seabed considering uncoupled or one-way coupled response of wave and seabed interaction. However, some of the marine structures are founded on seabed with steeper slopes. In this study, the wave-induced response and instability of sloping seabed are evaluated using a coupled finite element model. The interaction between fluid and porous seabed accounting for the effect of fluid motion on the seabed response, and conversely the effect of seabed response on the fluid motion (but not on the surface wave profile) is considered. The results indicate that the system response (fluid pressure, stresses, etc.) and the extent of instantaneously liquefied zone within the sloping seabed with significant steepness are lesser than those for horizontal seabed. Moreover, for typical sediment and wave characteristics, for the flat seabed, the response obtained from fully coupled analysis is not significantly different from those obtained by uncoupled analysis. For the sloping bed, such difference is slightly greater as compared to that for the flat bed.  相似文献   
86.
Based on RATAN-600 21-cm line observations with an angular resolution of 2.4′ over a wide range of radial velocities, we analyze the neutral-hydrogen distribution in the region of the SNR G78.2+2.1. In addition to an H I shell at low radial velocities immediately surrounding the radio remnant, we detected an extended expanding H I shell, ≈3° in diameter, at a radial velocity of ?25 km s?1, which closely coincides in coordinates and angular sizes with the outer X-ray shell discovered by Lozinskaya et al. (2000). The Hα emission studied by these authors in the SNR region also has a secondary peak at radial velocities from ?45 to ?20 km s?1. Since the radial velocities of these two objects differ significantly, their distances can be assumed to differ as well; i.e., a chance projection of two distinct objects is observed.  相似文献   
87.
Mars Express (MEX) does not carry its own magnetometer which complicates interpretation of ASPERA-3/MEX ion measurements. The direction of the interplanetary magnetic field (IMF) is especially important because it, among other things, determines the direction of the convective electric field and orientation of the cross tail current sheet and tail lobes. In this paper we present a case study to show the properties of the magnetic field near Mars in a quasi-neutral hybrid (QNH) model at the orbits where the Mars Global Surveyor (MGS) has made measurements, present a method to derive the IMF clock angle by comparing fields in a hybrid model and the direction of the magnetic field measured by MGS by deriving the IMF clock angle. We also use H+ ring velocity distribution observations upstream of the bow shock measured by the IMA/ASPERA-3 instrument on board MEX spacecraft. These observations are used to indirectly provide the orientation of the IMF. We use a QNH model (HYB-Mars) where ions are modeled as particles while electrons form a mass-less charge neutralizing fluid. We found that the direct MGS and non-direct IMA observations of the orientation magnetic field vectors in non-crustal magnetic field regions are consistent with the global magnetic field draping pattern predicted by the global model.  相似文献   
88.
The possible avenues for photoelectron transport were determined during southern hemisphere winter at Mars by using a mapping analysis of the theoretical magnetic field. Magnetic field line tracing was performed by superposing two magnetic field models: (1) magnetic field derived from a three-dimensional (3D) self-consistent quasi-neutral hybrid model which does not contain the Martian crustal magnetic anomalies and (2) a 3D map of the magnetic field associated with the magnetic anomalies based on Mars Global Surveyor magnetic field measurements. It was found that magnetic field lines connected to the nightside of the planet are mainly channeled within the optical shadow of the magnetotail whereas magnetic field lines connected to the dayside of the planet are observed to form the remainder of the magnetosphere. The simulation suggests that the crustal anomalies create “a magnetic shield” by decreasing the region near Mars which is magnetically connected to the Martian magnetosphere. The rotation of Mars causes periodic changes in magnetic connectivity, but not to qualitative changes in the overall magnetic field draping around Mars.  相似文献   
89.
A vertically integrated dynamic ice sheet model is coupled to the atmosphere-ocean-sea ice-land surface climate model recently developed by Wang and Mysak (2000). The background lateral (east-west) ice sheet discharge rate used by Gallee et al. (1992) is reduced and the planetary emissivity is increased (to parameterize the cooling effect of a decrease of the atmospheric CO2 concentration), in order to build up substantial ice sheets during a glacial period and hence set the stage for ice sheet-thermohaline circulation (THC) interactions. The following iceberg calving scheme is then introduced: when the maximum model height of the North American ice sheet reaches a critical value (2400 m), a prescribed lateral discharged rate is imposed on top of the background discharge rate for a finite time. Per a small prescribed discharge rate, repeated small iceberg calving events occur, which lead to millennial-scale climate cycles with small amplitudes. These are a crude representation of Dansgaard-Oeschger oscillations. Over one such cycle, the zonally averaged January surface air temperature (SAT) drops about 1.5°C at 72.5°N. However, a large prescribed lateral discharge rate leads to the shut down of the THC. In this case, the January SAT drops about 5°C at 72.5°N, the sea ice extent advances equatorward from 57.5° to 47.5°N and the net ice accumulation rate at the grid of maximum ice sheet height is reduced from 0.24 to 0.15 m/y. Since data strongly suggest that a collapsed THC was not a steady state during the last glacial, we restore the THC by increasing the vertical diffusivity in the North Atlantic Ocean for a finite time. The resulting climate cycles associated with conveyor-on and conveyor-off phases have much larger amplitudes; furthermore, the strong iceberg calving events lead to a larger loss of ice sheet mass and hence the period of the oscillations is longer (several thousand years). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
90.
Detailed structural interpretation of the recently acquired deep seismic multichannel profiles along the Iberian Atlantic Margins (IAM Project) provides new results on the geodynamic evolution of the eastern part of the Azores-Gibraltar plate boundary. Thrusting and folding of the oceanic basement and of Mesozoic and Cenozoic sedimentary cover of the Gorringe Bank region are consistent with the N–S convergence of Iberia and Africa. Compressive structures in the Gorringe Bank region are spread over a wide area. Deformation under compression took place mainly in Tertiary times, as is evidenced by a basal unconformity and several discontinuities in Tertiary sediments, although some deformation has also been recorded in Quaternary sediments. The compressive structures in the Gulf of Cadiz are E–W oriented thrusts, folds and related diapiric structures. N–S oriented transpressive deformation is likely to occur in the western Portuguese platform. There is no continuity of structures from the oceanic to the continental domain, suggesting that deformation transfers from one side to the other through a transcurrent fault zone. The fault contact between the two domains is located in the ocean-continent transition zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号