首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2767篇
  免费   594篇
  国内免费   274篇
测绘学   49篇
大气科学   300篇
地球物理   1513篇
地质学   1014篇
海洋学   149篇
天文学   21篇
综合类   69篇
自然地理   520篇
  2024年   11篇
  2023年   16篇
  2022年   46篇
  2021年   135篇
  2020年   130篇
  2019年   115篇
  2018年   104篇
  2017年   159篇
  2016年   153篇
  2015年   142篇
  2014年   188篇
  2013年   319篇
  2012年   143篇
  2011年   184篇
  2010年   137篇
  2009年   155篇
  2008年   181篇
  2007年   185篇
  2006年   162篇
  2005年   122篇
  2004年   119篇
  2003年   99篇
  2002年   102篇
  2001年   89篇
  2000年   67篇
  1999年   55篇
  1998年   46篇
  1997年   66篇
  1996年   49篇
  1995年   26篇
  1994年   26篇
  1993年   17篇
  1992年   12篇
  1991年   10篇
  1990年   15篇
  1989年   12篇
  1988年   11篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有3635条查询结果,搜索用时 15 毫秒
101.
Elevated turbidity (Tn) and suspended sediment concentrations (SSC) during and following flood events can degrade water supply quality and aquatic ecosystem integrity. Streams draining glacially conditioned mountainous terrain, such as those in the Catskill Mountains of New York State, are particularly susceptible to high levels of Tn and SSC sourced from erosional contact with glacial-related sediment. This study forwards a novel approach to evaluate the effectiveness of stream restoration best management practices (BMPs) meant to reduce stream Tn and SSC, and demonstrates the approach within the Stony Clove sub-basin of the Catskills, a water supply source for New York City. The proposed approach is designed to isolate BMP effects from natural trends in Tn and SSC caused by trends in discharge and shifts in average Tn or SSC per unit discharge (Q) following large flood events. We develop Dynamic Linear Models (DLMs) to quantify how Tn-Q and SSC-Q relationships change over time at monitoring stations upstream and downstream of BMPs within the Stony Clove and in three other sub-basins without BMPs, providing observational evidence of BMP effectiveness. A process-based model, the River Erosion Model, is then developed to simulate natural, hydrology-driven SSC-Q dynamics in the Stony Clove sub-basin (absent of BMP effects). We use DLMs to compare the modelled and observed SSC-Q dynamics and isolate the influence of the BMPs. Results suggest that observed reductions in SSC and Tn in the Stony Clove sub-basin have been driven by a combination of declining streamflow and the installed BMPs, confirming the utility of the BMPs for the monitored hydrologic conditions.  相似文献   
102.
The Arctic hydrologic cycle is intensifying, as evidenced by increased rates of precipitation, evapotranspiration, and riverine discharge. However, the controls on water fluxes from terrestrial to aquatic systems in upland Arctic landscapes are poorly understood. Upland landscapes account for one third of the Arctic land surface and are often drained by zero‐order geomorphic flowpath features called water tracks. Previous work in the region attributed rapid runoff response at larger stream orders to water tracks, but models suggest water tracks are hydrologically disconnected from the surrounding hillslope. To better understand the role of water tracks in upland landscapes, we investigated the surface and subsurface hydrologic responses of 6 water tracks and their hillslope watersheds to natural patterns of rainfall, soil thaw, and drainage. Between storms, both water track discharge and the water table in the hillslope watersheds exhibited diel fluctuations that, when lagged by 5 hr, were temporally correlated with peak evapotranspiration rate. Water track soils remained saturated for more of the summer season than soils in their surrounding hillslope watersheds. When rainfall occurred, the subsurface response was nearly instantaneous, but the water tracks took significantly longer than the hillslopes to respond to rainfall, and longer than the responses previously observed in nearby larger order Arctic streams. There was also evidence for antecedent soil water storage conditions controlling the magnitude of runoff response. Based on these observations, we used a broken stick model to test the hypothesis that runoff production in response to individual storms was primarily controlled by rainfall amount and antecedent water storage conditions near the water track outlet. We found that the relative importance of the two factors varied by site, and that water tracks with similar watershed geometries and at similar landscape positions had similar rainfall–runoff model relationships. Thus, the response of terrestrial water fluxes in the upland Arctic to climate change depends on the non‐linear interactions between rainfall patterns and subsurface water storage capacity on hillslopes. Predicting these interactions across the landscape remains an important challenge.  相似文献   
103.
The soil conservation service (now Natural Resources Conservation Service) Curve Number (SCS-CN), one of the most commonly used methods for surface runoff prediction. The runoff calculated by this method was very sensitive to CN values. In this study, CN values were calculated by both arithmetic mean (CN_C) and least square fit method (CN_F) using observed rainfall-runoff data from 43 sites in the Loess Plateau region, which are considerably different from the CN2 values obtained from the USDA-SCS handbook table (CN_T). The results showed that using CN_C instead of CN_T for each watershed produce little improvement, while replacing CN_T with CN_F improves the performance of the original SCS-CN method, but still performs poorly in most study sites. This is mainly due to the SCS-CN method using a constant CN value and discounting of the temporal variation in rainfall-runoff process. Therefore, three factors—soil moisture, rainfall depth and intensity—affecting the surface runoff variability are considered to reflect the variation of CN in each watershed, and a new CN value was developed. The reliability of the proposed method was tested with data from 38 watersheds, and then applied to the remaining five typical watersheds using the optimized parameters. The results indicated that the proposed method, which boosted the model efficiencies to 81.83% and 74.23% during calibration and validation cases, respectively, performed better than the original SCS-CN and the Shi and Wang (2020b) method, a modified SCS-CN method based on tabulated CN value. Thus, the proposed method incorporating the influence of the temporal variability of soil moisture, rainfall depth, and intensity factors suggests an accurate runoff prediction for general applications under different hydrological and climatic conditions on the Loess Plateau region.  相似文献   
104.
105.
Changes in potential evapotranspiration and surface runoff can have profound implications for hydrological processes in arid and semiarid regions. In this study, we investigated the response of hydrological processes to climate change in Upper Heihe River Basin in Northwest China for the period from 1981 to 2010. We used agronomic, climatic and hydrological data to drive the Soil and Water Assessment Tool model for changes in potential evapotranspiration (ET0) and surface runoff and the driving factors in the study area. The results showed that increasing autumn temperature increased snow melt, resulting in increased surface runoff, especially in September and October. The spatial distribution of annual runoff was different from that of seasonal runoff, with the highest runoff in Yeniugou River, followed by Babaohe River and then the tributaries in the northern of the basin. There was no evaporation paradox at annual and seasonal time scales, and annual ET0 was driven mainly by wind speed. ET0 was driven by relative humidity in spring, sunshine hour duration in autumn and both sunshine hour duration and relative humility in summer. Surface runoff was controlled by temperature in spring and winter and by precipitation in summer (flood season). Although surface runoff increased in autumn with increasing temperature, it depended on rainfall in September and on temperature in October and November. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
106.
A heavy rainfall event that occurred over the middle and lower reaches of the Yangtze River Basin(YRB) during July11–13 2000 is explored in this study. The potential/stream function is used to analyze the upstream "strong signals" of the water vapor transport in the Tibetan Plateau(TP). The studied time period covers from 2000 LST 5 July to 2000 LST 15 July(temporal resolution: 6 hours). By analyzing the three-dimensional structure of the water vapor flux, vorticity and divergence prior to and during the heavy rainfall event, the upstream "strong signals" related to this heavy rainfall event are revealed. A strong correlation exists between the heavy rainfall event in the YRB and the convective clouds over the TP. The "convergence zone" of the water vapor transport is also identified, based on correlation analysis of the water vapor flux two days and one day prior to, and on the day of, the heavy rainfall. And this "convergence zone" coincides with the migration of the maximum rainfall over the YRB. This specific coupled structure actually plays a key role in generating heavy rainfall over the YRB. The eastward movement of the coupled system with a divergence/convergence center of the potential function at the upper/lower level resembles the spatiotemporal evolution of the heavy rainfall event over the YRB. These upstream "strong signals" are clearly traced in this study through analyzing the three-dimensional structure of the potential/stream function of upstream water vapor transport.  相似文献   
107.
干旱具有发生频率高、持续时间长、波及范围广的特点。而干旱预报为科学地进行防旱抢险提供了决策支持。选取反映不同类型干旱的指标,即标准化降雨指标(SPI)、标准化土壤湿度指标(SSWI)和标准化径流指标(SRI),通过SWAT模型和带有时滞的灰色关联判断了各干旱之间的时滞。以陆浑水库控制流域为例进行了分析,结果表明:SWAT模型在该流域有很好的适用性,1975—2009年间发生各类干旱的次数在增加,且变率上从气象干旱、农业干旱到水文干旱有所增加,同时不同类型干旱之间表现出了一定的时滞关系,气象干旱对农业干旱的响应时间为1个月;水文干旱对气象干旱的响应时间为4个月;水文干旱对农业干旱的响应时间为2个月。  相似文献   
108.
Lineament extraction approach allowed mapping of larger number of lineaments in a classical manner in tectonic and structural studies. In the present study, various techniques were adopted to extract lineaments using Landsat ETM+ images. To remove the biasness of the images, some pre-processing techniques like stream ordering, band differencing, colour texturing were employed to enhance the edges of the structural features. Extracted lineaments and its distribution and orientation were mapped using ArcGIS Spatial analyst tool. Results of the study showed maximum number of lineaments were oriented in the ENE–SWS direction with 63° overall inclination. Accuracy assessment and validation were made with respect to visual interpretation and overlaying the lineament on Digital Topographic Model as well as with respect to an existing geological lineament map of the study site. The result of accuracy assessment indicates higher compatibility of Central Indian Suture with the geological map of the study area.  相似文献   
109.
中国地质调查局与阿根廷地质矿产调查局合作在阿根廷西北部米纳毕戈塔地区进行1︰25万水系沉积物测量,该区属于干旱-半干旱高寒山区,为突出找矿效果,消除或减少风积物干扰,需要确定适合于该区的水系沉积物采样粒度。为此,在该区选择一个有已知矿床的1︰5万图幅进行采样粒度试验,分别选择10~60目、-60目、60~80目、-80目4个粒度级进行粒度试验;根据我国区域地球化学勘查规范,每个粒度分析39种元素。结果表明,大部分元素在4种粒度水系沉积物中的分布形态基本一致,都能够较好地反映出区内已知矿床,说明采用的采样方法可以有效地避免风成砂干扰;金、银、铜、锡等成矿元素在4种粒度中的分布略有差异,10~60目的金、铜和锡异常对已知矿体的反应更清晰准确。因此,本区水系沉积物地球化学测量的最佳采样粒度是10~60目。根据本次试验结果,中-阿地调局在本区联合开展1︰25万水系沉积物地球化学测量时采用了10~60目水系沉积物作为采样介质,取得了很好的效果。这是本区第一次进行水系沉积粒度试验,对本区将来的地球化学调查和研究具有指导意义。  相似文献   
110.
变化环境下渭河流域水文干旱演变特征剖析   总被引:4,自引:0,他引:4       下载免费PDF全文
环境变化影响区域水资源的可持续开发利用,导致水文过程出现非平稳特征,需发展非平稳水文干旱评估方法。选取渭河流域为研究区,依据流域内2个水文站、62个雨量站和24个气象站1961-2013年数据,基于可变下渗容量模型定量分离气候变化和人类活动对径流衰减的贡献;采用标准化径流指数(Standardized Runoff Index, SRI)剖析水文干旱时空演变特征;提出多种SRI参数化方案,对比评定各方案表征非平稳干旱的合理性以及环境变化对干旱演变的影响作用。结果表明:自1991年以来渭河流域年径流量呈显著衰减趋势,人类活动是径流演变的主要因素,对咸阳和华县站径流量变化的贡献率分别为-66.7%和-71.0%;时变参数方案计算的干旱指数能合理重建历史水文干旱序列;人类活动是渭河流域1991年以来短历时水文干旱发生的主导因素,气候变化主要影响长历时旱涝的演变趋势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号