首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5052篇
  免费   664篇
  国内免费   693篇
测绘学   159篇
大气科学   213篇
地球物理   2355篇
地质学   2285篇
海洋学   450篇
天文学   30篇
综合类   301篇
自然地理   616篇
  2024年   16篇
  2023年   38篇
  2022年   67篇
  2021年   111篇
  2020年   227篇
  2019年   201篇
  2018年   203篇
  2017年   226篇
  2016年   256篇
  2015年   222篇
  2014年   254篇
  2013年   494篇
  2012年   190篇
  2011年   216篇
  2010年   217篇
  2009年   276篇
  2008年   339篇
  2007年   317篇
  2006年   309篇
  2005年   306篇
  2004年   235篇
  2003年   192篇
  2002年   169篇
  2001年   151篇
  2000年   174篇
  1999年   135篇
  1998年   138篇
  1997年   133篇
  1996年   108篇
  1995年   99篇
  1994年   70篇
  1993年   78篇
  1992年   58篇
  1991年   47篇
  1990年   33篇
  1989年   24篇
  1988年   28篇
  1987年   9篇
  1986年   14篇
  1985年   6篇
  1984年   4篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   3篇
  1954年   3篇
排序方式: 共有6409条查询结果,搜索用时 765 毫秒
731.
The capability of RADARSAT synthetic aperture radar (SAR) for the purpose of snow-line/accumulation area mapping for a temperate alpine glacier is examined. In agreement with other orbital C-band SAR studies, RADARSAT can discriminate between firn and bare ice facies. Limited observations are reported with respect to the electromagnetic variability of the ice facies in the ablation area, but they are inconclusive. Operational considerations are discussed with respect to reconciling the uncertainties of late-summer weather and their possible impact on the dielectric and scattering properties of the glacier surface. Vagaries associated with other glacier settings, mass balance states and their associated facies configurations are discussed including the difficulty of using the transient snow-line to define the equilibrium line and the lower extent of the accumulation area for glaciers where superimposed ice may form.
The radar remote-sensing reconnaissance of equilibrium line altitude (ELA) and accumulation area ratio (AAR) for estimating glacier mass balance requires serious consideration in those instances where traditional ground measurements used in the direct glaciological method are absent. However, with respect to the ELA, such estimates can vary depending on the accuracy of the reference digital elevation information. Moreover, for many glacier configurations, where mass balance variations due to altitude are influenced or in some cases completely masked by local balance variations, defining the ELA may be an irreconcilable problem. Using the AAR may be more robust in this regard. It is further determined that the total error inherent in the reconnaissance method would have serious implications for the confident estimation of mass balance normals and climate-related trends if the method were to be utilized over the longer term.  相似文献   
732.
Mass changes of Blue Glacier, USA are calculated from topographic maps made from vertical aerial photography in late summer of 1939, 1952, 1957, and 1987, along with laser altimetry flown in June 1996. Changes in elevation between maps were adjusted for seasonal variations in the snow cover, and to account for the ablation between the date of photography and 1 October. Topography obtained from the laser altimetry was adjusted for snow thickness and glacier motion to estimate topography of 1 October 1995. The mass of Blue Glacier has changed less than 7 m (water equivalent) during this 56 year period which is minor compared with other glaciers in the region and elsewhere in the world. Glacier-average annual mass balances, beginning in 1956, have been calculated either from stake measurements and probing of late-season snow, or from a regression analysis using late-season measurements of the equilibrium line altitude. A comparison with the changes derived from surface maps shows values obtained from field measurements are too positive by about 0.4 m a?1 , indicating that considerable caution is needed when interpreting time series of mass balance. Two alternative time series of mass balance consistent with the long-term mass changes are created by making simple adjustments: (1) a single constant is subtracted from each value so that the series is consistent with the 1957–95 mass change; (2) one constant is subtracted from each value over 1957–87 and another is subtracted from each value over 1987-95 so that the series is consistent with both the 1957–87 and 1987–95 mass changes. The mass balance of Blue Glacier was generally positive until the mid-1970s and negative since. The fluctuations of mass balance closely resemble those of snowfall on the glacier as estimated from the joint distribution of temperature and precipitation. The climate in western Washington was cooler and wetter during the decade before the mid-1970s, but the trend since has been towards warmer and drier conditions.  相似文献   
733.
Seasonal mass balance components bw (winter balance) and bs (summer balance) as well as ct (total accumulation) and at (total ablation), can be used directly to infer climate variables. In contrast, ac (net balance of the accumulation area) and aa (net balance of the ablation area), and ba or bn (annual or net balance) can not. The traditional Alpine system of observations of ac and aa , however, can be converted to true seasonal values bw and bs if both pairs of components are simultaneously observed for some years, because a correlation between the two pairs of components exists. We analyzed bw and bs data and their mean, standard deviations and ratios of these to the corresponding net or annual balances for 50 glaciers with relatively long records representing different regions in the northern hemisphere. We also investigated correlations between seasonal components. A negative correlation between bw and bs exists at many glaciers. About two-thirds of the glaciers show insignificant correlations (?0.3 < r < 0.3), implying independence of summer and winter balances. In a few unusual cases the correlations are positive. These different correlations, or lack thereof, may offer insight into feedback conditions that must exist in this climate-related system. The correspondence of the bw and ct , and bs and at , appears to depend largely on the relative amounts of summer snowfall, a function of their climatic environment expressed as [α = (bw+bs)/2]. The contribution of variability of bs to the net balance increases markedly with decreasing values of α. The variability of bw and bs , and therefore the net balance, has been increasing with time; whether this is due to an increase in climate variability or to other causes is not clear. It appears that bw has been increasing with time at the highest altitudes, but bs has been increasing more rapidly especially at low altitudes; the many-glacier average net balance is becoming more negative.  相似文献   
734.
柴达木盆地东南部土壤风蚀研究   总被引:3,自引:0,他引:3  
柴达木盆地东南部土壤风蚀风洞模拟实验结果表明,土壤风蚀强度随风力作用和下垫面因子不同而不同。净风对土壤风蚀作用较小,但在挟沙风作用下,风蚀强烈。地表类型不同风蚀强度变化很大,流动沙地是耕地(小麦留茬)的数百倍。土壤质地不同起沙风速不同,细沙和极细沙比例越高风蚀量越大。翻耕地与未翻耕地风蚀变化悬殊,翻耕地风蚀量是未翻耕地的10倍以上。自然植被和人为留茬均有抑制风蚀的作用。  相似文献   
735.
Sediment cores from Chappice Lake, a hypersaline, groundwater-fed lake in southeastern Alberta, have been used in previous studies to reconstruct Holocene climate using lake levels as a source for proxy climate data. This assumes that the lake is fed by a shallow groundwater system sensitive to changes in climate. In this study we use the dynamics and chemistry of groundwater entering the lake to test this hypothesis.Groundwater inputs calculated from historical records using a simple water budget were highest during periods when the precipitation deficit was high. Over specific time intervals, the expected relationship between lake volumes and climate were not always found. Feedback loops between lake levels and groundwater input, and time lags within the system are the mechanisms proposed to explain these discrepancies.Field measurements suggest discharge of a local surficial groundwater system. Slug tests reveal a high conductivity system (K = 10-5 m/s) surrounding the lake. Hydraulic heads measured in standpipe, multilevel and minipiezometers installed around Chappice Lake show that the lake is situated in a closed hydraulic head contour. Hydraulic heads and water table elevations show strong annual fluctuations corresponding to seasonal changes in recharge. Horizontal hydraulic gradients measured in areas of groundwater springs indicate a strong horizontal component of flow towards the lake. Vertical hydraulic gradients are low and indicate the upward flow of water consistent with the discharge of a shallow, surfical groundwater system.Groundwater sampled from deposits surrounding Chappice Lake and springs feeding the lake have compositions similar to both shallow surficial aquifers and bedrock aquifers suggesting that the lake may be receiving inputs from both sources. However, evaporation simulations using PHRQPITZ, show that the evaporation of water typical of bedrock aquifers result in a mineral assemblage and brine composition different from that found at Chappice Lake. This suggests that discharge of a regional groundwater system can be eliminated as a dominant source over the lake's history. Evaporation simulations suggest that evaporation of groundwater from shallow surficial deposits can best explain the present mineral assemblage and brine chemistry and were likely the dominant source of water to the lake.Bedrock and shallow surficial groundwater sources have different chemistries and isotopic compositions. In hydrogeological settings such as Chappice Lake where more than one source may contribute to the lake, the relative importance of the different sources may change with changes in climate. If the source water composition to the lake changes, identifying changes in climate or hydrology based on changes in the composition of the lake preserved in sediment core will be made more difficult. This may complicate paleoclimate and paleohydrological reconstructions that rely on mineralogical and isotopic data.  相似文献   
736.
737.
Eutrophication Dynamics of Tolo Harbour, Hong Kong   总被引:8,自引:0,他引:8  
The time and spatial variation of water quality in Tolo Harbour, a eutrophic landlocked semi-enclosed bay frequented by algal blooms, is studied using a dynamic eutrophication model. Hourly changes of tide levels and currents are computed by a link-node model assuming M2 tidal forcing. Phytoplankton growth is assumed to be limited by solar radiation, nitrogen and temperature. The model incorporates light acclimation by algae, self-shading, photosynthetic production, nutrient uptake, and a dynamic determination of the carbon to chlorophyll ratio. In particular, sediment-water-pollutant interactions are modelled via an anaerobic benthic layer segment. Using recorded pollution loads and environmental forcing as input, the model predictions of daily-averaged water quality are compared with the extensive water quality monitoring data of the Environmental Protection Department (EPD). The predicted spatial distribution and trends of algal biomass, inorganic nitrogen, dissolved oxygen (DO), as well as sediment oxygen demand (SOD), are in general agreement with field observations.  相似文献   
738.
For the interpretation of many boundary-layer field experiments the geostrophic wind is needed as an external parameter. However, quite often and especially in remote areas this wind is not known at all or difficult to determine because there are not enough measurements of the surface pressure.Here it is shown how measurements carried out with the HELIPOD system, a helicopter-borne meteorological turbulence measuring system, may be used to evaluate the geostrophic wind. This is done by the analysis of the pressure field at different heights. An additional analysis of the temperature field in the same heights allows for the discussion of the quality of the derived geostrophic wind. An intercomparison with the vertical wind profile enables us to discuss the influence of the curvature of the isobars. From this, finally, also the gradient wind can be estimated.  相似文献   
739.
郭虎  彭治班  吴宝俊  王淑静 《气象》1999,25(12):8-11
仿照流行病传播模型的思路,给出了公众天气预报传播过程最简单的数学模型  相似文献   
740.
 The crustal structure of the transition zone between the Eastern Alps and the western part of the Pannonian depression (Danube basin) is traditionally interpreted in terms of subvertical Tertiary strike-slip and normal faults separating different Alpine tectonic units. Reevaluation of approximately 4000-km-long hydrocarbon exploration reflection seismic sections and a few deep seismic profiles, together with data from approximately 300 wells, suggests a different structural model. It implies that extensional collapse of the Alpine orogene in the Middle Miocene was controlled by listric normal faults, which usually crosscut Alpine nappes at shallow levels, but at depth merge with overthrust planes separating the different Alpine units. The alternative structural model was tested along a transect across the Danube basin by gravity model calculations, and the results show that the model of low-angle extensional faulting is indeed viable. Regarding the whole lithosphere of the western Pannonian basin, gravity modelling indicates a remarkable asymmetry in the thickness minima of the attenuated crust and upper mantle. The approximately 160 km lateral offset between the two minima suggests that during the Miocene extension of the Pannonian basin detachment of the upper crust from the mantle lithosphere took place along a rheologically weak lower crust. Received: 13 July 1998 / Accepted: 18 March 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号