首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5052篇
  免费   664篇
  国内免费   693篇
测绘学   159篇
大气科学   213篇
地球物理   2355篇
地质学   2285篇
海洋学   450篇
天文学   30篇
综合类   301篇
自然地理   616篇
  2024年   16篇
  2023年   38篇
  2022年   67篇
  2021年   111篇
  2020年   227篇
  2019年   201篇
  2018年   203篇
  2017年   226篇
  2016年   256篇
  2015年   222篇
  2014年   254篇
  2013年   494篇
  2012年   190篇
  2011年   216篇
  2010年   217篇
  2009年   276篇
  2008年   339篇
  2007年   317篇
  2006年   309篇
  2005年   306篇
  2004年   235篇
  2003年   192篇
  2002年   169篇
  2001年   151篇
  2000年   174篇
  1999年   135篇
  1998年   138篇
  1997年   133篇
  1996年   108篇
  1995年   99篇
  1994年   70篇
  1993年   78篇
  1992年   58篇
  1991年   47篇
  1990年   33篇
  1989年   24篇
  1988年   28篇
  1987年   9篇
  1986年   14篇
  1985年   6篇
  1984年   4篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   3篇
  1954年   3篇
排序方式: 共有6409条查询结果,搜索用时 15 毫秒
541.
The spatial and temporal variations of precipitation and runoff for 139 basins in South Korea were investigated for 34 years (1968–2001). The Precipitation‐Runoff Modelling System (PRMS) was selected for the assessment of basin hydrologic response to varying climates and physiology. A non‐parametric Mann–Kendall's test and regression analysis are used to detect trends in annual, seasonal, and monthly precipitation and runoff, while Moran's I is adapted to determine the degree of spatial dependence in runoff trend among the basins. The results indicated that the long‐term trends in annual precipitation and runoff were increased in northern regions and decreased in south‐western regions of the study area during the study period. The non‐parametric Mann–Kendall test showed that spring streamflow was decreasing, while summer streamflow was increasing. April precipitation decreased between 15% and 74% for basins located in south‐western part of the Korean peninsula. June precipitation increased between 18% and 180% for the majority of the basins. Trends in seasonal and monthly streamflow show similar patterns compared to trends in precipitation. Decreases in spring runoff are associated with decreases in spring precipitation which, accompanied by rising temperatures, are responsible for reducing soil moisture. The regional patterns of precipitation and runoff changes show a strong to moderate positive spatial autocorrelation, suggesting that there is a high potential for severe spring drought and summer flooding in some parts of Korea if these trends continue in the future. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
542.
In this study a simple modelling approach was applied to identify the need for spatial complexity in representing hydrological processes and their variability over different scales. A data set of 18 basins was used, ranging between 8 and 4011 km2 in area, located in the Nahe basin (Germany), with daily discharge values for over 30 years. Two different parsimoniously structured models were applied in lumped as well as in spatially distributed according to two distribution classifications: (1) a simple classification based on the lithology expressed in three permeability types and (2) a more complex classification based on seven dominating runoff production processes. The objective of the study was to compare the performances of the models on a local and on a regional scale as well as between the models with a view to identifying the accuracy in capturing the spatial variability of the rainfall‐runoff relationships. It was shown that the presence of a specific basin characteristic or process of the distribution classification was not related with higher model performance; only a larger basin size promoted higher model performance. The results of this study also indicated that the permeability generally contained more useful information on the spatial heterogeneity of the hydrological behaviour of the natural system than did a more detailed classification on dominating runoff generation processes. Although model performance was slightly lower for the model that used permeability as a distribution classification, consistency in its parameter values was found, which was lacking with the more complex distribution classification. The latter distribution classification had a higher flexibility to optimize towards the variability of the runoff, which resulted in higher performance, however, process representation was applied inconsistently. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
543.
大姚、民乐-山丹地震前的中短期前兆   总被引:5,自引:2,他引:3  
利用川滇及青藏块体北缘地区上世纪80年代至2003年的跨断层流动形变观测资料,借助应变强度比时序曲线,通过丽江Ms7.0、景泰Ms5.9等震例研究,获取与2003年7月大姚Ms6.2、Ms6.1地震和10月民乐-山丹Ms6.1地震孕育有关的中短期前兆异常。分析表明:①大姚、民乐-山丹地震前1年内异常场地数远超过场地总数的1/3,相对近源区异常在发震地区占一半;②大姚Ms6.2地震前半年内,盐源-丽江地块及其邻近区域以及北东向延伸的川滇交界地区异常明显增多,相对集中。2003年7~9月大幅减弱;而鲜水河断裂、楚雄-通海断裂南段有所增强;③民乐-山丹震前十余天至数月内相对近源区及其邻近构造区域呈现异常相对分散-相对集中且局部增强-一临震前减弱的时空演变特征。震后一个月内青藏块体北缘地区仍有近1/3的场地呈现异常(海原一六盘山断裂带尤为突出)。  相似文献   
544.
Terraces are a common feature of Mediterranean landscapes. In many places they are no longer maintained so that the number of intact terraces is in prolonged decline. The aim of this paper is to examine the effect of terrace removal and failure on hydrological connectivity and peak discharge in an agricultural catchment (475 ha) in south‐east Spain. The situation of 2006 is compared to that in 1956 and to a scenario without terraces (S2). The spatial distribution of concentrated flow was mapped after four storms in 2006. The degree of connectivity was quantified by means of connectivity functions and related to storm characteristics, land use and topography. For 1956, 2006 and scenario S2, connectivity functions and peak discharge to the river were determined for a storm with a return period of 8·2 years. The results show that the decrease in intact terraces has led to a strong increase in connectivity and discharge. The contributing area to the river system has increased by a factor 3·2 between 1956 and 2006. If all terraces were to be removed (scenario S2), the contributing area may further increase by a factor 6·0 compared to 2006. The spatial extent of concentrated flow and the degree of connectivity are related to storm magnitude as expressed by the erosivity index (EI30). Although a large part of the concentrated flow (25–50%) occurs on dirt roads, it appears that croplands become a major source of runoff with increasing rainfall. The results suggest that connectivity theory can be used to improve rainfall–runoff models in semi‐arid areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
545.
This article describes a data collection approach for determining the significance of individual heat fluxes within streams with an emphasis on testing (i.e. identification of possible missing heat fluxes), development, calibration and corroboration of a dynamic temperature model. The basis for developing this approach was a preliminary temperature modelling effort on the Virgin River in southwestern Utah during a low‐flow period that suggested important components of the energy balance might be missing in the original standard surface‐flux temperature model. Possible missing heat fluxes were identified as bed conduction, hyporheic exchange, dead zone warming and exchange and poor representation of the amount of solar radiation entering the water column. To identify and estimate the relative importance of the missing components, a comprehensive data collection effort was developed and implemented. In particular, a method for measuring shortwave radiation behaviour in the water column and an in situ method for separating out bed conduction and hyporheic influences were established. The resulting data and subsequent modelling effort indicate that hyporheic and dead zone heat fluxes are important, whereas solar radiation reflection at the water surface was found to be insignificant. Although bed conduction can be significant in certain rivers, it was found to have little effect on the overall heat budget for this section of the Virgin River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
546.
This modelling study deals with the time‐dependent behaviour of rockfill media, which is of particular interest during the life of rockfill dams. Breakage of rock blocks and crack propagation are the main processes responsible for rockfill creep and collapse. The modelling procedure presented here is performed on two scales: on the rock block scale, where the grain is taken to be an assembly of rigid particles initially endowed with cohesive bonds, and on the rockfill scale, which is taken to involve a set of breakable grains interacting via contact and friction processes. The grain breakage process is described in term of a thermodynamically consistent damage interface model, where the damage is a gradual delayed process. This model was implemented in a non‐smooth contact dynamics code. The effects of the main parameters involved were analysed by performing numerical studies. The ability of the model to predict the creep behaviour of rockfill media is confirmed by presenting several simulations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
547.
The paper presents a strainhardening constitutive model for unsaturated soil behaviour based on energy conjugated stress variables in the framework of superposed continua. The proposed constitutive law deals with hydro‐mechanical coupling phenomena. The main purpose is to develop within a consistent framework a model that can deal with possible mechanical instabilities occurring in partially saturated materials. The loss of capillary effects during wetting processes can, in fact, play a central role in unstable processes. Therefore, it will be shown that the bonding effects due to surface tensions can be described in a mathematical framework similar to that employed for bonded geomaterials to model weathering or diagenesis effects, either mechanically or chemically induced. The results of several simulations of common laboratory tests on partially saturated soil specimens are shown. The calculated behaviour appears to be in good qualitative agreement with that observed in the laboratory. In particular it is shown that volumetric collapse phenomena due to hydraulic debonding effects can be successfully described by the model. Finally, it will be highlighted the ability of the model to naturally capture the transition to a fully saturated condition and to deal with possible mechanical instabilities in the unsaturated regime. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
548.
A spatially distributed, physically based, hydrologic modeling system (MIKE SHE) was applied to quantify intra‐ and inter‐annual discharge from the snow and glacierized Zackenberg River drainage basin (512 km2; 20% glacier cover) in northeast Greenland. Evolution of snow accumulation, distribution by wind‐blown snow, blowing‐snow sublimation, and snow and ice surface melt were simulated by a spatially distributed, physically based, snow‐evolution modelling system (SnowModel) and used as input to MIKE SHE. Discharge simulations were performed for three periods 1997–2001 (calibration period), 2001–2005 (validation period), and 2071–2100 (scenario period). The combination of SnowModel and MIKE SHE shows promising results; the timing and magnitude of simulated discharge were generally in accordance with observations (R2 = 0·58); however, discrepancies between simulated and observed discharge hydrographs do occur (maximum daily difference up to 44·6 m3 s?1 and up to 9% difference between observed and simulated cumulative discharge). The model does not perform well when a sudden outburst of glacial dammed water occurs, like the 2005 extreme flood event. The modelling study showed that soil processes related to yearly change in active layer depth and glacial processes (such as changes in yearly glacier area, seasonal changes in the internal glacier drainage system, and the sudden release of glacial bulk water storage) need to be determined, for example, from field studies and incorporated in the models before basin runoff can be quantified more precisely. The SnowModel and MIKE SHE model only include first‐order effects of climate change. For the period 2071–2100, future IPCC A2 and B2 climate scenarios based on the HIRHAM regional climate model and HadCM3 atmosphere–ocean general circulation model simulations indicated a mean annual Zackenberg runoff about 1·5 orders of magnitude greater (around 650 mmWE year?1) than from today 1997–2005 (around 430 mmWE year?1), mainly based on changes in negative glacier net mass balance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
549.
550.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号